Thur 9, 2005

The SNR RX J1713-3946

- HESS preliminary observation of this SNR proves imaging capabilities in TeV range
- EGRET saw a signal in this direction (more later)
- Extensive literature on this SNR, with the central question:

Can we prove this SNR accelerates nuclei (protons)?

- Obviously, a very interesting target for GLAST!
 - Detecting π photons?
 - Resolving the SNR in GeV?

Classification of Supernovae

Types of Supernova Remnants

- Shell-type remnants:
 - Vast majority
 - shock wave ploughs through space, heats and stirs up ISM, producing a big shell of hot material in space.
 - Limb brightening => ring structure
- Crab-like remnants: also "plerions" (Crab like)
 - Like shell-type, but a pulsar blows out jets of very fast moving material. These remnants look more like a "blob" than a "ring."
- Composite Remnants:
 - shell-like, crab-like depending what part of spectrum
 - 2 kinds : thermal and plerionic.
 - Thermal : shell-type in the radio (synchrotron radiation). Crab-like in X-ray (but with spectral lines)
 - Plerionic : crab-like in both radio and X-ray, but with shells. No X-ray lines in shell but not in center
- Fourth type? Mixed Morphology (Rho & Petre 1998)
 - shell-type in radio, but the X-ray morphology centrally peaked.
 - X-ray emission from ISM, not the ejecta making up the SNR.
 - no prominent, central, compact source in radio or X-ray bands.

"Canonical" Evolution of SNR

- Free Expansion :
 - Velocity very large with respect to ambient medium
 - Swipe up large fraction of the medium
- Sedov Phase :
 - Expansion driven by conversion of of internal energy into kinetic energy
- Radiative Phase :
 - Energy loss due to radiative cooling
 - Shock becomes isothermal
 - Shell moves with constant radial momentum
- Merging Phase :
 - Speed of expansion < speed of sound</p>
 - SNR dissolves into ISM

All this assumes isotropic, homogeneous, plus plenty other caveats...

Thur 9, 2005

- Plasma (ISM or stellar wind) heated by the shock: E ~ NkT = M/m_p*kT with E~10⁵¹ ergs with N~ M/m_p and M~a few M_{sol} -> kT~10 keV X-ray
- Ionized medium : emission lines (in X as well)
- If diffusive shock acceleration correct :
 - Synchrotron emission from accelerated electrons in the shell:

$$E_e \approx \frac{300 \text{ TeV}}{B_{\mu G}^{1/2}} \left(\frac{E_{\rm X}}{1 \text{ keV}}\right)^{1/2}$$

- Nuclei (protons) as well!

CR spectrum up to the knee.... or almost

Thur 9, 2005

SN1006 (Koyama et al. 1995, ASCA)

RXJ1713

Discovered by ROSAT all sky survey (Pfeffermann & Aschenbach 1996)

About the CCO : Lazendic et al.(2003), Cassam-Chenai et al.(2004)

- no pulsation and no long term flux variability
- XMM spectral fit studies show global agreement with other data
- N_h compatible with the SNR. So, Type II/Type Ib-c very likely

Thur 9, 2005

Thur 9, 2005

CO Observations

- CO molecule strongly polarized, contrary to H₂
 - mm-wave rotational transitions observable
 - H₂ tracer (condition for one = condition for the other)
- Mapping of the radial velocity (via Doppler shift)
 - Correlation with galactic curve : estimation of distance
 - Correlation with CO/H2 conversion factor : Constraint on N(H2)
 Slane et al. 1999

Total molecular column density, contours are logarithmically Galactic Longitude spaced at 34, 60, 107, 190, 224, and 600 × 10²⁰ molecules cm²

- How to prove that the SNR is in the vicinity of the cloud?
 - Morphology
 - Compatibility with N(H2) from X ray spectral fit
 - CO(2->1)/CO(1->0) enhancement

CO observation : Distance Estimation

- First estimate (Slane et al. 1999, Butt et al. 2001) : D~6 kpc
- Refined CO survey + XMM reanalysis : D~1 kpc

Cassam-Chenai et al. 2003

Thur 9. 2005

V _{LSR}	D	$N_{\rm H}$	(10^{22} cm)	cm ⁻²)		
$({\rm km}~{\rm s}^{-1})$	(kpc)	NW	SW	CE		
-0.4	0.14	0.43	0.50	0.38		
-3.0	0.58	0.52	0.60	0.48		
-5.6	0.98	0.62	0.71	0.56		
-8.2	1.33	0.74	0.83	0.65		
-10.9	1.67	0.89	0.97	0.76		
-13.5	1.97	1.03	1.12	0.85		
-16.0	2.24	1.14	1.22	0.92		
-18.6	2.50	1.21	1.28	0.97		
-21.2	2.74	1.27	1.33	1.01		
-23.8	2.96	1.35	1.37	1.05		
-26.5	3.17	1.44	1.42	1.08		

- Global coincidence of a CO hole at a degree scale with the X-ray SNR obtained by ASCA (Koyama et al. 1997; Slane et al. 1999) and ROSAT (Pfeffermann, Aschenbach 1996)
- Detailed correspondence of the CO peaks on an arc-min scale with the Xray data of XMM (J. Hiraga et al. 2005)
- Existence of a velocity-shifted CO component apparently associated with one of the X-ray peaks.

Thur 9, 2005

Some more XMM-Newton (Hiraga et al. 2005)

A Historical Remnant? AD 393 (Wang et al. 1997)

ム元 盗 殿 星合是謂驚位絕 顯 并 元 太 元 兆 戮 + 也 斬 庶宣言夫 其從弟 但 常有篤疾 六年十 日有 年正 黙責而已 年九月丁 月 F 亂 臣若有戮者二 月癸巳月奄心前星占 乙酉熒惑 P 張氏 **叉王國** 行 馬 丑歲星熒惑填星同在亢氏占 首 内 潛 外 寶 旱 行 入 有兵喪與飢改立 由是 月占 邪 逆 至 狡 失 E 時 年 憂在宮中 漏 朝 九 日 亂 卑 政 月 太 闇 帝 Ŧ F 公 非 -

"A guest star appeared within the asterism Wei during the 2nd lunar month of the 18th year of the Tai-Yuan reign period (February 27 - March 28, AD393), and disappeared during the 9th lunar month (October 22 -November 19, AD393)."

Thur 9. 2005

11

Thur 9, 2005

EGRET Detection (3rd Catalog)

BEG	5 J17	14-3857,25	58.52,-38.96,348.04, -0.09,0	.51 ,	43.6, 6.5,	2.30,	797, 117	7.0, P1234	,	, ,	em
- 1			3FC 11714-3857	,	38.0,15.4,	+-0.20,	11/, 104		,	, ,	C
		10^{-7}	526_51714 5057	,	01.0,22.0,	,	104,		,	,	
		10		,	/U.J, , 72 0 22 0	,	52, 57		,	,	
		1	: '\T_ 1	,	150 2	,	57, 20		,	,	
			· • • • • • • • • • • • • • • • • • • •	,	150.2, ,	,	20, 24		,	,	
		10^{-8}	- \ =	,	102 6	,	24, 20		,	,	
			E Z I	,	, טיכטד, טיכטד, דער, דער, דער, דער, דער, דער, דער, דע	,	ວບ, ວາ		,	,	
		F	F N F	,	02.3,44.7,	,)Z,)5		,	,	
			· · · · · · · · · · · · · · · · · · ·	,	90.0, , 100 0 27 0	,	122		,	,	
		10^{-5}		,	100.0, 27.0, 70, 0, 24, 4	,	126	4.2, 220.0	,	,	
	-			,	79.9,24.4, 155 <i>/</i>	,	120, 68	1.6, 223.+	,	,	
	eV	ł		,	7/ 6 20 0	,	1/3	1.0, 229.+	,	,	
	Μ	10 - 10	- / -	,	102 6	,	14J, 80	1 5 302 3	,	,	
	S	10		,	102.0, , /3 3 21 3	,	76	21, 3, 302.3	,	,	
	n2	-		,	124 7	,	70, 36	0 5 324 0	,	,	
) CI		· · · · · ·	,	55 0	,	30, 30	0.0, 524.0 0.0, 330 +	,	,	
	ŝ	10^{-11}	_ '_' _	,	194 3 53 0	,	79	4 2 334 0	,	,	
	uo	10		,	84 7 39 6	,	54	2 3 336 5	,	,	
	ote	E		,	123 6	,	70 70	1 4 421 0	,	,	
	h	-	· '\-' -	,	119 6	,	82	1 8 422 0	,	,	
	щ	10^{-12}	- 1, 1	,	101.1.	,	75.	1.3. 423.0	,	,	
					68.4.	,	136.	1.7. 421.+	,	,	
		ļ.	F(>100MeV)=		119.4.	,	74.	1.6. 423.5			
		1.2	$(4.36 \pm 0.65) \times 10^{-7} \text{ ph cm}^{-2} \text{ s}^{-1}$	ĺ.	37.4.10.9.	,	237	3.5. P1	,		
		10 13	$F = -2.3 \pm 0.2$	ĺ.	64.0.13.4.	,	302.	5.0. P2	ĺ.	,	
			1	ĺ.	48.3.12.6.	,	222.	4.0. P3	ĺ.	,	
		-		ĺ.	38.0.17.2.	,	99.	2.3. P4	ĺ.	,	
		10^{-14}	· · · · · · · · · · · · · · · · · · ·		48.1, 8.5,	,	532,	5.9, P12	,	,	
		10 1			44.0,10.2,	,	317,	4.5, P34	,	,	
		10	5 100 1000 100	00	. ,	,	,		•		
			Energy (MeV)								

Thur 9, 2005

TeV Detection with CANGAROO

Muraishi et al. 2000 & Enomoto *et* al. 2002:

$$dF/dE = (1.63 \pm 0.15 \pm 0.32) \times 10^{-11} E^{-2.84 \pm 0.15 \pm 0.20}$$
 cm-2 s-1 TeV-2

Thur 9, 2005

Proton Acceleration... or not

Reimer & Pohl (2002) : "3EG J1714-3857 is either associated with the SNR or an upper limit to the gamma-ray emission of the SNR."

Thur 9, 2005

HESS Observation

Thur 9, 2005

A shot at simulating the SNR

- HESS countmap (bck subtracted) from Berrie
- Ad Hoc Prescription : total flux and photon index from EGRET
- EGRET diffuse model with photon index=2.2, in the neighborhood of the SNR (total flux in the map 0.66 m⁻²s⁻¹)

Thur 9, 2005

A shot at simulating the SNR

- Improving EGRET signal
- Detecting gamma rays from the SNR
- Constraining hadronic photon emission processes
- A gamma-ray pulsar? Who knows.....

For another GLAST lunch:

- Image resolution with GLAST
- Shock acceleration in SNR for dummies
- More on the simulated source detection
- "The SNR RX J1713.73946 is perhaps the best natural laboratory available today for studying the acceleration and diffusion of cosmic-rays. The unique combination of a relatively close SNR and a group of well defined molecular clouds in its surroundings, none of them in front of the remnant itself, makes this source a priority target for the forthcoming generation of high-energy instruments such as HESS, AGILE, INTEGRAL, and GLAST, as well as for infrared, radio, mm and sub-mm observatories." (Torres et al. 2003)