

Gamma Rays from the Radio Galaxy M87

Outline

The uniqueness of M87 Overview and morphology Gamma-ray Observations Models for gamma-ray emission - Leptonic - Hadronic Production of UHECRs Observational distinctions between models

What's so special about M87?

- VHE Cherenkov Telescopes: 8 AGN, 7 blazars + M87
 Doppler boosting intensifies gamma-ray emission in blazars
- What about M87?
 - Jet opening angle ~ 35°
 - Close
 - Low jet luminosity ~ 5 × 10⁴⁴ erg s⁻¹ \Rightarrow less heating to surrounding gas, less γ ray attenuation

Morphology

- Center of Virgo cluster - Distance ~ 16 Mpc - $M_{BH} = 3 \times 10^9 M_{\odot}$

HST

2 kpc jet

Chandra

31" (~2.4 kpc)

Morphology

- Center of Virgo cluster - Distance ~ 16 Mpc - $M_{BH} = 3 \times 10^9 M_{\odot}$

2 kpc jet

Chandra

Large-scale jets & radio halo

VLA (90 cm)

31" (~2.4 kpc)

Morphology of central region

Summary of Gamma-ray Observations

• Upper limits:

- EGRET: F (> 100 MeV) < 2.2 × 10⁻⁸ cm⁻² s⁻¹
- Whipple 2001-03: $F(>250 \text{ GeV}) < 2.6 \times 10^{-11} \text{ cm}^{-2} \text{ s}^{-1}$ (Lebohec *et al.* 2001)
- HEGRA 1998-99: F (>730 GeV) = 0.96 × 10⁻¹² cm⁻² s⁻¹ (Aharonian *et al.* 2003)

HESS 2003-04:

- 211 ± 38 events
- Energy threshold: 160 GeV
- -F (>730 GeV) ~ 0.2-0.5 × 10⁻¹² cm⁻² s⁻¹

– 2005 data analysis underway, $>6\sigma$ detection

2003-04 HESS Observations

Consistent with point source from nuclear region

Beikicke et al. 2005

2003-04 HESS Observations

Beilicke et al. 2005

Evidence for variability

What is the source of the TeV emission?

- Variability: flux dropped by factor of ~3 between 1998/99 and 2003/04
- Knot A
 - ~80 pc × 55 pc (projected) $\Rightarrow \Delta t$ ~ few hundred years
 - Variability timescale too short
- HST-1
 - Increase in X-ray flux by factor of ~3 in spring of 2004
 - Increase by factor of ~50 between 1999 and 2004 (Harris et al. 2005)
 - No evidence for increase in TeV observations
 - Lack of coordinated variability \Rightarrow no TeV emission
- Leptonic model for nuclear emission...

Leptonic Model for Nuclear Emission

- Homogeneous SSC model fails for HE emission
- Decelerating flow model:
 - sub-pc deceleration
 - from $\Gamma_0 = 20$ to $\Gamma = 5$ over 3×10^{17} cm (0.1 pc)
 - Beaming is frequency-dependent
 - "Upstream Compton" scattering

Georganopoulos, Perlman, & Kazanas 2005

Synchrotron Proton Blazar (SPB) Model

- Blob of material moving relativistically along jet axis
- p & e⁻ accelerated across shocks
- Power-law distribution of protons in high B (~5-50 G)
- $\gamma_p \sim 10^{10-11} > 10^8 \Rightarrow$ pion production
- Gamma-ray production from:
 - Proton-photon interactions:
 - $\pi^0 \rightarrow 2\gamma$
 - $^{\circ}$ $\pi^{\pm} \rightarrow \mu^{\pm} + \nu_{\mu}$

 $- \mu^{\pm} \rightarrow e^{\pm} + \nu_{\mu} + \nu_{e}$

- e^{\pm} cascades ($2\gamma \rightarrow e^{\pm} \rightarrow 2\gamma$...)
- $-\pi^{\pm} \& \mu^{\pm}$ synchrotron radiation
- p synchrotron radiation
- Low-energy hump from e⁻ synchrotron

SPB Model Results for M87

- Input spectra from average SEDs
- Non-simultaneous data
- HE flux contributors:
 - p synchrotron (dashed)
 - μ[±] synchrotron (dashed triple-dot)
 - π^0 cascade (dotted)
 - π^{\pm} cascade (dashed-dotted)

A Site for Cosmic Ray Acceleration

- In proton models, ultra-high-energy cosmic ray protons are produced by:
 - Direct acceleration at termination shocks of jets
 - Decay of neutrons produced in jets or accretion shocks outside galaxy: $p\gamma \rightarrow n\pi^+$
- UHECRs (E > 10²⁰ eV) attenuated by CMB (GZK cutoff)
 - At 3 \times 10²⁰ eV, MFP ~ 5 Mpc, energy loss distance ~ 20 Mpc
- UHECR detections claimed with E > 10²⁰ eV
- M87 is close enough to produce them
- Neutrons from M87 can account for observed flux "if the extragalactic magnetic field topology is favorable" (Protheroe, Donea, & Reimer 2003)

Observational Distinctions between Models

- Neutrino flux (difficult to detect!)
- Independent measure of B
- More simultaneous observations
- Larger sample of γ-ray sources
 - Tighter model constraints
 - GLAST?

