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Outline:

•Jet-dominated AGN as gamma-ray sources 

•Emission processes and content the relativistic jet

•Future observational prospects in the high energy regime towards
the answers: GLAST and NuSTAR



Radio, optical and X-ray images of the jet in M 87

Jets are common in AGN – and radiate in radio, optical and X-ray wavelengths



Astrophysical jets and blazars:  what are 
blazars?  

• Blazars are active galaxies with prominent relativistic jets 

• Jets are clearly visible in high-resolution radio images 

• Blazars are commonly detected as MeV – GeV and 
even TeV γ-ray emitters (~ 60 detected by EGRET) 

• Rapidly variable in all bands including γ-rays

• Variability of γ-rays implies compact source size, where the opacity of 
GeV γ-rays against keV X-rays to e+/e- pair production would be 
large – sources would be opaque to their own emission!  

• Entire electromagnetic emission (γ−rays too!) most likely arises in a 
relativistic jet with Lorentz factor Γj ~ 10, pointing close to our line 
of sight

• The observed emission is WAY brighter than would be for a non-
relativistic jet (Doppler boosting: Fluxobs ~ Fluxiso x Γj

4 )



Unified picture of active galaxies
• Presumably all AGN 

have the same basic 
ingredients:  a black 
hole accreting via disk-
like structure

• In blazars the jet is 
most likely 
relativistically boosted 
towards us and thus so 
bright that its emission 
masks the isotropically
emitting “central 
engine”
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Blazars are variable in all observable bands

Example:  X-ray and GeV γ-ray light curves from the 1996 campaign to 
observe 3C279
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Example of a spectrum of an 
EGRET blazar: 3C279

(data from Wehrle et al. 1998)

Example of a spectrum of a 
TeV blazar:  Mkn 421

(data from Macomb et al. 1995)
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• What do we infer?  We have some ideas about the radiative
processes…

– Polarization and the non-thermal spectral shape of the low energy 
component are best explained via the synchrotron process:  relativistic 
electrons experience Lorentz force in magnetic field, are accelerated, radiate

– The high-energy component is most likely due to the inverse Compton 
process by the same relativistic particles that produce the synchrotron 
emission, Compton-upscatter internal or external radiation

– Relative intensity of the synchrotron vs. Compton  processes depends on the 
relative energy density of the magnetic field vs. the ambient “soft” photon field

• BUT – WE STILL DON'T KNOW HOW THE JETS ARE LAUNCHED, 
ACCELERATED AND COLLIMATED – AND WHAT IS THEIR CONTENT

• TO MAKE SOME PROGRESS ON THIS FRONT, WE SHOULD AT LEAST 
KNOW THE COMPOSITION OF THE JET 

(electrons-protons? electron-positrons?)

Radiative processes in blazars



Modelling of radiative processes in blazars
• In the context of the synchrotron models, emitted photon frequency is 

νs = 1.3 x 106 B x γel
2 Hz 

where B is the magnetic field in Gauss
and γel is the electron Lorentz factor

• The best models have B ~ 1 Gauss, and γel for electrons radiating at the 
peak of the synchrotron spectral component of ~ 103 – 106, 
depending on the particular source

• Degeneracy between B and γel is “broken” by spectral variability 
+ spectral curvature (Perlman et al. 2005)

• The high energy (Compton) component is produced by the same 
electrons as the synchrotron peak and νcompton = νseed x γel

2 Hz 

• Still, the jet Lorentz factor Γj is ~ 10, while Lorentz factors of 
radiating electrons are γel ~ 103 – 106

• Must find a mechanism to convert the “bulk flow” of the jet (Γj ~ 10) 
to “random motion” of electrons (γel ~ thousands)



Photon and electron spectra

• Radiation energy spectra often have power-law shape, P(E) = PoE−α

• It is easy to show that for synchrotron or inverse Compton radiation, 
such a spectral form arises from a power-law distribution of the 
number of radiating electrons, N(γ) = Noγ−p where α = (p-1)/2

• This means that for most typical spectra, the least-energetic 
particles are most numerous – they are the bulk of the jet!

photons

electrons



Even in this extreme case of a very 
hard X-ray spectrum of a blazar, 

the lowest energy particles dominate 
by number

(data from Blazejowski et al. 2004)

• Low-energy (synchrotron) component cannot be used to study the 
lowest end of the electron energy distribution (via “easy” radio 
observations) – the compact regions are opaque to self-absorption

• The only hope to study the low-energy, most numerous particles is the 
hard X-ray / soft γ-ray regime -> NuSTAR

• Simultaneous observations will be needed as the sources are variable



Viable mechanism for particle acceleration - colliding shells model:  
Shells move with Lorentz factors Γ where Γ2 > Γ1, shell 2 collides with shell 1, a 
shock forms, and particles are accelerated via Fermi process in shocks
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Content of the jet
• Are blazar jets dominated by kinetic energy of particles from the start, 

or are they initially dominated by magnetic field (Poynting flux)?  
(Blandford;  Vlahakis;  Wiita;  Meier;  Hardee; …)

• There is a critical test of this hypothesis, at least for quasar-type 
(“EGRET”) blazars:

• If the kinetic energy is carried by particles, the radiation environment 
of the AGN should be bulk-Compton-upscattered to X-ray energies by 
the cold electrons associated with the bulk motion of the jet

• If Γjet = 10, the ~10 eV H Lyα photons should appear 
bulk-upscattered to 102 x 10 eV ~ E > 1 keV (E is higher for “hotter”
internal electrons)

• X-ray flare should precede the γ-ray flare (form a “precursor”)
• X-ray monitoring concurrent with GLAST observations is crucial to 

settle this 

• A lack of X-ray precursors would imply that the jet is “particle-poor”
and may be dominated (at least initially) by Poynting flux



From Sikora, Begelman, and Rees 1994

• Source of the “seed”
photons for inverse 
Compton scattering can 
depend on the 
environment

• It can be the synchrotron 
photons internal to the jet 
(the “synchrotron self-
Compton” model 

• - This is probably 
applicable to BL Lac 
objects such as Mkn 421

• Alternatively, the photons 
can be external to the jet 
(“External Radiation 
Compton” model)

• - This is probably 
applicable to blazars
hosted in quasars such as 
3C279



GLAST LAT’s ability to measure the flux and spectrum of 
3C279 for a flare similar to that seen in 1996 

(from Seth Digel)


	GLAST – NuSTAR synergies in unraveling the structure of jets �in active galaxies
	Radio, optical and X-ray images of the jet in M 87
	Astrophysical jets and blazars:  what are blazars?  
	Unified picture of active galaxies
	EGRET All  Sky Map (>100 MeV)
	Blazars are variable in all observable bands
	Example of a spectrum of an EGRET blazar: 3C279�(data from Wehrle et al. 1998)
	
	Modelling of radiative processes in blazars
	Photon and electron spectra
	Even in this extreme case of a very hard X-ray spectrum of a blazar, �the lowest energy particles dominate by number��(data fr
	Content of the jet
	From Sikora, Begelman, and Rees 1994
	GLAST LAT’s ability to measure the flux and spectrum of 3C279 for a flare similar to that seen in 1996 �(from Seth Digel)

