Can emission at higher energies provide insight into the physics of shocks and how the GRB inner engine works?

Eduardo do Couto e Silva Dec 1, 2005

GRB Fundamental Questions

- Origin
 - Where does the energy come from?
 - How can it be so large?
 - How does the inner engine work?
- Evolution
 - How does the GRB evolve?
 - What are the dynamics of the relativistic flow?
 - How does it collimate the flow (in case of jets)?
- Observed Radiation
 - What is behind the emission mechanism?
 - How can we explain the radiation we observe?

Some GRB Experimental Facts

Duration of GRBs

If there is a compact object at the inner engine, the source must also be active for a long time

(e.g stellar mass BH accreting from a massive disk, rotating NS driving Poynting flux)

Introduction to the Fireball Model

Fireball Model: quasi thermal spectrum

GRB Fundamental Questions

- Origin
 - Where does the energy come from?
 - How can it be so large?
 - How does the inner engine work?
- Evolution
 - How does the GRB evolve?
 - What are the dynamics of the relativistic flow?
 - How does it collimate the flow (in case of jets)?
- Observed Radiation
 - What is behind the emission mechanism?
 - How can we explain the radiation we observe?

Baryonic Load in the Fireball Model

Fireball Evolution

- Expansion phase ($\Gamma \sim r$)
 - limited by the rest mass of baryons

Coasting phase ($\Gamma \sim \text{constant}$)

- form shells of comparable size of the fireball at rest (Blandford and Mckee 1976)
 - Newtonian for large load
 - Relativistic for small load

- Decelerating phase ($\Gamma \sim r^{-2}$)
 - limited by inertia of external medium

GRB Fundamental Questions

- Origin
 - Where does the energy come from?
 - How can it be so large?
 - How does the inner engine work?
- Evolution
 - How does the GRB evolve?
 - What are the dynamics of the relativistic flow?
 - How does it collimate the flow (in case of jets)?
- Observed Radiation
 - What is behind the emission mechanism?
 - How can we explain the radiation we observe?

Dissipation Phase: Internal Shocks

- Engine creates an outflow wind
 - Shells are produced
 - Fast ones catch slow ones
 - Fluctuations in the distribution Γ is responsible for time structure
- Efficiency Problem
 - Conversion of U_{kin}to radiation ~ few % (Kumar 1999)
 - can't transfer heat into radiation from Coulomb ep collisions
 - Hydrodynamic (1/10)
 - Radiation by e- (1/3)
 - Observed energy band (1/3)
- Variability depends on distance from inner engine (Zhang & Meszaros 2003)
 - Is shell's B local or from inner engine?

E. do Couto e Silva

Improve efficiency

- multiple collisions

Dissipation Phase: External Shocks

- Plethora of models
 - Shells
 - thin or thick
 - Shocks
 - Relativistic or Newtonian
 - External Medium
 - ISM or wind like

What is the ambient density?

- Deceleration Phase (~ 10¹⁷ cm)
 - Stellar wind in massive progenitor
 - Medium is not homogeneous
 - n ~ 1/r²
 - Wind sweeps ~ 1/ Γ x its rest mass
 - Typically ~ 10^{-6} M_{\odot}
 - **Dense ISM as in early galaxies?**
 - **Constant medium density**
 - ISM now ~ 1 cm⁻³
 - Molecular clouds > 10³ cm⁻³
 - **Clumpy ISM?**
- Need initial Lorentz factor to put constraints on the swept-up matter versus radius
 - Timescale is days
 - relativistic effect

SNR ~ many pc

GRB	υ _w (1000 km s ⁻¹)	Й (10−6 М _⊙ уг−1)	^п о (ст ⁻³)
980519	0.58	0.3	100.0
990123	0.50	0.015	3.4
990510	1.4	0.2	55.0
991208	1.0	0.7	$> 10^4$
991216	1.8	0.08	$> 10^4$
000418	1.4	0.9	$> 10^4$

High Energy Emission Models

Shock Plasma Parameters

- Luminosity of the Source
 - L ~ 10⁵² ergs s⁻¹
 - too hard for GLAST
- Lorentz Factor of Bulk Plasma
 - $-\Gamma \sim 10^2 \text{ to } 10^3$
 - cut-offs at the energy spectrum (GLAST)
- Time Variability
 - $-\Delta T \sim 10^{-4} \text{ to } 10^{-3} \text{ s}$
 - ~30 μs with GLAST
- Fraction of Thermal Magnetic Energy Density behind the shock
 - $\epsilon_{\rm B}$ ~ 1 to 10⁻⁵
 - Ratio of peaks in SED (GLAST+?)
- Fraction of Thermal Electron Energy Density behind the shock
 - ε_e ~ 1 to 10⁻⁵
 - Ratio of peaks in SED (GLAST+?)
- Energy distribution of accelerated electrons
 - p (power law index) ~ 2 to 3
 - SED fits (GLAST+?)

Can we use GLAST measurements to constrain these parameters?

> Are p, $\varepsilon_{\rm B} \varepsilon_{\rm e}$ time independent? (Paitanescu and Kumar 2001)

Modeling Delayed Emission for GRB941017

- High Energy data constrains
 - Total Energy
 - Lorentz factor
 - Ambient density
- Two models used
 - External shock
 - e- from FS IC scatters γ from RS
 - SSA is important
 - Internal Shock
 - ∆t = 10⁻⁵

Multiwavelength Observations to Constrain Models

- Model
 - Prompt emission from internal shocks
 - in relativistic wind
 - Spectra as high as 10 GeV
 - Flux has a strong dependence on Γ
 - Measure cut-offs with GLAST!
- Ratio of peaks in kev/GeV can be used to constrain ratio of $\epsilon_{B/}\epsilon_{e}$
 - LAT + GBM?
 - Swift + GLAST?
- Caveat:
 - single shell collisions

Which Model do we Choose?

Region I

- Proton synchroton
 - hard with GLAST
 - large $\varepsilon_{\rm B}$
- Region II
 - Inverse Compton
 - good for GLAST
 - denser medium helps
 - small ε_B :internal shocks
- Region III
 - Electron synchroton
 - not in GLAST

We need DATA !

Region I

- Proton synchroton
 - hard with GLAST
 - large $\epsilon_{\rm B}$
- Region II
 - Inverse Compton
 - good for GLAST
 - denser medium helps
- Region III
 - Electron synchroton
 - not in GLAST range

Guetta & Granot 2003

Can we constrain p and Γ ?

Model

- Prompt emission from internal shocks
 - in relativistic wind
- To escape the system photons must have
 - opacity of HE γ to pair production with LE γ < 1
 - opacity to pair production < 1
- SSC dominates above 100 MeV
 - Power law index > 2
 - GLAST can constrain p
- GRB940217:
 - Γ= 600, ∆t = 0.1 ms, E_p = 200 KeV
 - Should we expect variability smaller that 0.1 ms?

To B or Not to B....

- Magnetic Fields may play a key role in GRB formation
 - Magnetic Poynting flux dominates instead of radiation pressure
 - Easier to transport energy
 - No need of baryons (good for internal models)
 - Narrower Peak Energy distribution
 - Energy components
 - Electromagnetic
 - Internal
 - Kinetic (bulk)

$$\sigma = \frac{EM}{U_{\text{int}} + U_{kin}}$$

Large value makes it hard to develop strong external shocks

(Paitanescu and Kumar 2001)

• This will be my next talk...