GLAST Large Area Telescope

Pre-Environmental Test Review

Mechanical Test: Plans and Procedures

John Ku
Design Integration and Analysis
Purpose / Contents

• Demonstrate readiness to proceed with environmental testing of the integrated flight instrument
• The LAT…
 – …is heretofore compliant with all mechanical requirements
 • EXCEPTION: Radiator strength test not performed yet
 – Minimum margin is high (low risk)
 » Peak load = 526 lb_f
 » A-Basis Yield Strength = 5352 lb_f
 » MS_{insert} = 9.2
 – Will be performed prior to first required use (Acoustic Test)
 – …has been appropriately tested at lower levels of assembly
 – …passes comprehensive systems test
 – …pre-test analyses are complete
 – …environmental Test plans and procedures are complete
 – …test facilities readiness and certification verified
 – …STE and MGSE are complete, fabricated, and ready for use
 – …test manpower is sufficient to cover all planned activities
All flight system design analyses have been successfully completed and demonstrate adequate margin

- **Mission System Spec → 433-SPEC-0001**
- **LAT-SC Interface Requirements Spec → 433-IRD-0001**
- **Mission Assurance Requirements Spec → 433-MAR-0001**
- **LAT Environmental Requirements Spec → LAT-SS-00778**
- **LAT Performance Verification Plan → LAT-MD-00408-04c**

<table>
<thead>
<tr>
<th>Source</th>
<th>Chapter</th>
<th>Requirement</th>
<th>S.B.</th>
<th>IS</th>
<th>Compliant*</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSS</td>
<td>3.3.1.9.3</td>
<td>Mass Allocation</td>
<td><3000 kg</td>
<td>2899.6</td>
<td>A, ET</td>
<td>Mass Property Test to Confirm Analysis</td>
</tr>
<tr>
<td>433-SPEC-0001</td>
<td>3.3.1.11.1.2</td>
<td>Thermo-mechanical</td>
<td><7 arc-s</td>
<td>5.9 arc-s</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>IRD</td>
<td>3.2.1.1</td>
<td>Coordinate System</td>
<td>A-1</td>
<td>A-1</td>
<td>I</td>
<td>Compliant by inspection</td>
</tr>
<tr>
<td>433-IRD-0001</td>
<td>3.2.1.4</td>
<td>CAD model format</td>
<td>IGS</td>
<td>IGS</td>
<td>I</td>
<td>Alternate format use okay by agreement</td>
</tr>
<tr>
<td></td>
<td>3.2.1.6</td>
<td>Units of measure</td>
<td>Metric</td>
<td>Metric</td>
<td>I</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.2.2.4</td>
<td>Mass Allocation</td>
<td><3000 kg</td>
<td>2899.6</td>
<td>A, ET</td>
<td>Mass Property Test to Confirm Analysis</td>
</tr>
<tr>
<td></td>
<td>3.2.2.5</td>
<td>Zcg</td>
<td><185mm above LIP</td>
<td>170.21 mm</td>
<td>A, ET</td>
<td>Mass Property Test to Confirm Analysis</td>
</tr>
<tr>
<td></td>
<td>3.2.2.5</td>
<td>Xcg, Ycg</td>
<td><20mm</td>
<td>1.57 mm max</td>
<td>A, ET</td>
<td>Mass Property Test to Confirm Analysis</td>
</tr>
<tr>
<td></td>
<td>3.2.2.8.1.2</td>
<td>Stiffness (fixed base)</td>
<td>>50 Hz</td>
<td>58.36</td>
<td>A, ET</td>
<td>Low Level Sine Sweep to Confirm Analysis</td>
</tr>
<tr>
<td></td>
<td>3.2.2.8.2</td>
<td>Static Load</td>
<td>Env. Spec</td>
<td>Env. Spec</td>
<td>I</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.2.2.8.3</td>
<td>Factors of Safety</td>
<td>GEVS-SE</td>
<td>GEVS-SE</td>
<td>I</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.2.2.8.4</td>
<td>Random Vibration</td>
<td>GEVS-SE</td>
<td>GEVS-SE</td>
<td>I</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.2.2.8.5</td>
<td>Acoustics</td>
<td>Delta II 2920H-10</td>
<td>Delta II 2920H-10</td>
<td>I</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.2.2.8.7</td>
<td>FEA Model Compatibility</td>
<td>NASTRAN</td>
<td>NASTRAN</td>
<td>I</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.2.2.8.9</td>
<td>Sine Vibe Levels</td>
<td>GPO Developed</td>
<td>GPO Developed</td>
<td>I</td>
<td>Reference: SAI-TM-3011, dated 4/11/06</td>
</tr>
<tr>
<td>MAR</td>
<td>4.4.1</td>
<td>Modal Test</td>
<td>NR if f1 > 50Hz</td>
<td>NR</td>
<td>A</td>
<td>Fixed Base (idealized DOFs for Flexures)</td>
</tr>
<tr>
<td>433-MAR-0001</td>
<td>4.4.3</td>
<td>Low Level Sine Sweep</td>
<td>150 Hz</td>
<td>150 Hz</td>
<td>I</td>
<td>Part of Vibration Test Procedure TD-08112</td>
</tr>
<tr>
<td>ERS</td>
<td>8.1</td>
<td>Static Equiv. Accelerations</td>
<td>ECLA</td>
<td>ECLA</td>
<td>I</td>
<td>Envelopes FDLC2 results</td>
</tr>
<tr>
<td>LAT-SS-00778</td>
<td>8.2</td>
<td>Interface Limit Loads</td>
<td>ECLA</td>
<td>ECLA</td>
<td>I</td>
<td>Envelopes FDLC2 results</td>
</tr>
<tr>
<td></td>
<td>9.1</td>
<td>Sine Vibration Levels</td>
<td>GPO Developed</td>
<td>GPO Developed</td>
<td>I</td>
<td>Reference: SAI-TM-3011, dated 4/11/06</td>
</tr>
<tr>
<td></td>
<td>9.2</td>
<td>Random Vibration Levels</td>
<td>GEVS-SE</td>
<td>GEVS-SE</td>
<td>I</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9.3</td>
<td>Acoustic Vibration Levels</td>
<td>Delta II 2920H-10</td>
<td>Delta II 2920H-10</td>
<td>I</td>
<td></td>
</tr>
</tbody>
</table>

* A=Analysis; I=Inspection; ET=To be verified in Dynamics Environmental Test
Requirements compliant: changes since CDR

• Requirements / Design Update, i.e. Changes since CDR (requiring updates to CDR analysis)
 – SC Interface inserts increased from 3/8 → 7/16 and increased spacing
 • Rationale: increased insert size to increase margin of safety
 • Rationale: increased spacing to 1.5D away from pin interface so bearing allowables could be used
 • Approved: Presented at delta-CDR and approved, modifications made to ICD
 – TKR-Grid interface bushings added
 • Rationale: Bearing stress to grid could cause yielding and collateral damage to trackers. Bushings reduce contact stress
 • Approved: Analysis showed bushings reduced stresses, and SS tests passed with no damage to aluminum grid simulator.
 – Finalized Radiator Mount Bracket
 • Rationale: Thermal distortion of radiators could induce high stresses in RMB. Stiffness of RMB reduced in X-direction to minimize thermally induced stress
 • Approved: Documented in LAT-TD-02472-01, Section 5C
 – Radiator Sine vibration tests omitted in favor of tap test and static test
 • Rationale: Tap testing provides adequate dynamic measurement of radiator modes
 • Rationale: Static testing of radiator sufficiently exercises radiator in-plane loads
 • Approved: Series of telecons between SLAC/GSFC/LMCO to reach agreement
Requirements compliant: changes since CDR

- Requirements / Design Update, i.e. Changes since CDR (requiring updates to CDR analysis)
 - Shear Plates added at CAL-Grid interface to address slippage concerns
 - Added mounting bosses to the Grid for Shear Plate mounting
 - Modified EMI Skirt pieces to accommodate Shear Plate mounting to the Grid
 - Removed corner tabs from CAL base plate
 - Rationale: friction alone is not a good way to ensure no slippage. Tight mechanical fit via liquid shims solves this problem
 - Approved: Documented in LAT-TD-02472-01, Section 3 & 5A
 - EBOX attachments fully defined: stand-offs on CAL interface, dry joint on X-LAT interface.
 - Pockets machined in X-LAT to reduce installation stress
 - Detailed stress analysis complete
 - Rationale: X-LAT to EBOX interface was not clearly defined at CDR. This design resulted from a post-CDR tiger team effort.
 - Approved: Peer review held 5 November 2003 and approved.
 - X-LAT test requirement deleted
 - Rationale: Impractical to test and unmeaningful due to impossible boundary conditions. Qualification by analysis route taken
 - Approved: After 5 November 2003 peer review demonstrated high margins, this approach was approved.
 - All margins were reevaluated against ECLA and FDLC2 results
 - ICDs updated and approved
 - Resultant changes to verification matrix incorporated and approved
• Current calculations for system performance are fully compliant with requirements

• Completed analysis of current design demonstrate adequate margin for mechanical loads and stress from handling, test and flight environments (ECLA and FDLC2 used for flight loads)

<table>
<thead>
<tr>
<th>Subsystem / Description</th>
<th>Source for Loads [Ref 1 & 2]</th>
<th>Load Case [7.2]</th>
<th>Peak Stress/Load [Mpa/N]</th>
<th>Mat</th>
<th>Mass Factor [7.1]</th>
<th>SF(y)</th>
<th>Allowable F(y) [Mpa/N]</th>
<th>Source for Allowable</th>
<th>MS(y)</th>
<th>SF(u)</th>
<th>Allowable F(u) [MPa/N]</th>
<th>Source for Allowable</th>
<th>MS(u)</th>
<th>Ref</th>
<th>Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRID</td>
<td></td>
</tr>
<tr>
<td>Perimeter Wall Bulk Stress</td>
<td>Sep-03 Air</td>
<td>28.3</td>
<td>6061-T6</td>
<td>1.1138</td>
<td>2.0</td>
<td>241</td>
<td>MIL-HDBK-5J</td>
<td>2.62</td>
<td>2.6</td>
<td>276</td>
<td>MIL-HDBK-5J</td>
<td>2.37</td>
<td>T-8.2-27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interior Wall Bulk Stress</td>
<td>Sep-03 Air</td>
<td>14.3</td>
<td>6061-T6</td>
<td>1.1138</td>
<td>2.0</td>
<td>241</td>
<td>MIL-HDBK-5J</td>
<td>6.57</td>
<td>2.6</td>
<td>276</td>
<td>MIL-HDBK-5J</td>
<td>5.66</td>
<td>T-8.2-27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wing Stresses near SC Mt</td>
<td>Sep-03 MECO</td>
<td>59.3</td>
<td>6061-T6</td>
<td>1.1138</td>
<td>2.0</td>
<td>241</td>
<td>MIL-HDBK-5J</td>
<td>0.82</td>
<td>2.6</td>
<td>276</td>
<td>MIL-HDBK-5J</td>
<td>0.61</td>
<td>T-8.2-27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wing DSHP Holes</td>
<td>Sep-03 Air</td>
<td>4.8</td>
<td>6061-T6</td>
<td>1.1138</td>
<td>2.0</td>
<td>241</td>
<td>MIL-HDBK-5J</td>
<td>21.35</td>
<td>2.6</td>
<td>276</td>
<td>MIL-HDBK-5J</td>
<td>18.69</td>
<td>T-8.2-27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wing Corner</td>
<td>N/A</td>
<td>Lift</td>
<td>16.9</td>
<td>6061-T6</td>
<td>1.087</td>
<td>2.0</td>
<td>241</td>
<td>MIL-HDBK-5J</td>
<td>5.56</td>
<td>2.6</td>
<td>276</td>
<td>MIL-HDBK-5J</td>
<td>4.78</td>
<td>T-8.2-27</td>
<td></td>
</tr>
<tr>
<td>Wing Corner</td>
<td>N/A</td>
<td>Seismic</td>
<td>125.0</td>
<td>6061-T6</td>
<td>1.087</td>
<td>1.25</td>
<td>241</td>
<td>MIL-HDBK-5J</td>
<td>0.42</td>
<td>1.40</td>
<td>276</td>
<td>MIL-HDBK-5J</td>
<td>0.45</td>
<td>T-8.2-27</td>
<td></td>
</tr>
<tr>
<td>Calorimeter/Grid #6 Inserts</td>
<td>Sep-03 Air</td>
<td>3923.3</td>
<td>#6 Helicoil</td>
<td>1.1144</td>
<td>2.0</td>
<td>7775</td>
<td>AMS5726C</td>
<td>0.80</td>
<td>2.6</td>
<td>10364</td>
<td>AMS5726C</td>
<td>1.27</td>
<td>S-8.6.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calorimeter/Grid #6 Fasteners</td>
<td>Sep-03 Air</td>
<td>5520.2</td>
<td>#8 Helicoil</td>
<td>1.1144</td>
<td>2.0</td>
<td>1169</td>
<td>AMS5726C</td>
<td>0.88</td>
<td>2.6</td>
<td>14893</td>
<td>AMS5726C</td>
<td>1.40</td>
<td>S-8.6.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SC Mount Bushing (ID Bearing)</td>
<td>Sep-03 Air</td>
<td>301.4</td>
<td>A-286</td>
<td>1.114</td>
<td>2.0</td>
<td>876</td>
<td>AMS5726C</td>
<td>0.30</td>
<td>2.6</td>
<td>1344</td>
<td>AMS5726C</td>
<td>0.54</td>
<td>A-p.229</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SC Mount Pin Hole (e/D=1.5)</td>
<td>Sep-03 Air</td>
<td>252.3</td>
<td>6061-T6</td>
<td>1.113</td>
<td>1.25</td>
<td>365</td>
<td>MIL-HDBK-5J</td>
<td>0.04</td>
<td>1.40</td>
<td>476</td>
<td>MIL-HDBK-5J</td>
<td>0.21</td>
<td>A-p.229</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SC Mount Pin Hole (e/D=1.5)</td>
<td>Pre-test GLST</td>
<td>168.0</td>
<td>6061-T6</td>
<td>1</td>
<td>1.00</td>
<td>365</td>
<td>MIL-HDBK-5J</td>
<td>1.17</td>
<td>1.12</td>
<td>476</td>
<td>MIL-HDBK-5J</td>
<td>1.53</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SC Mount Keenserts (HD)</td>
<td>Sep-03 MECO</td>
<td>40515.0</td>
<td>7/16" HD</td>
<td>1.114</td>
<td>1.25</td>
<td>N/A</td>
<td>AMS5726C</td>
<td>1.00</td>
<td>1.12</td>
<td>86131</td>
<td>KNH720J</td>
<td>0.36</td>
<td>A-p.363</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SC Mount Keenserts (HD)</td>
<td>Pre-test GLST</td>
<td>48703.6</td>
<td>7/16" HD</td>
<td>1</td>
<td>1.00</td>
<td>N/A</td>
<td>N/A</td>
<td>1.12</td>
<td>86131</td>
<td>KNH720J</td>
<td>0.58</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SC Mounts Bolts (200 ksi)</td>
<td>Sep-03 MECO</td>
<td>40515.0</td>
<td>A-286</td>
<td>1.11</td>
<td>1.25</td>
<td>70300</td>
<td>AMS5726C</td>
<td>0.25</td>
<td>1.40</td>
<td>78111</td>
<td>AMS5726C</td>
<td>0.24</td>
<td>A-p.234</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SC Mounts Bolts (200 ksi)</td>
<td>Pre-test GLST</td>
<td>48703.6</td>
<td>A-286</td>
<td>1</td>
<td>1.00</td>
<td>70300</td>
<td>AMS5726C</td>
<td>0.44</td>
<td>1.12</td>
<td>78111</td>
<td>AMS5726C</td>
<td>0.43</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shear Plates 1/2</td>
<td>Sep-03 MECO</td>
<td>282.8</td>
<td>A-286</td>
<td>1.11</td>
<td>2.0</td>
<td>365</td>
<td>MIL-HDBK-5J</td>
<td>0.04</td>
<td>2.6</td>
<td>281</td>
<td>MIL-HDBK-5J</td>
<td>0.21</td>
<td>T-8.2-27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SC Mount Plate (Tension)</td>
<td>Sep-03 Air</td>
<td>104.4</td>
<td>7075-T7351</td>
<td>1.113</td>
<td>1.25</td>
<td>407</td>
<td>MIL-HDBK-5J</td>
<td>1.80</td>
<td>1.40</td>
<td>476</td>
<td>MIL-HDBK-5J</td>
<td>1.93</td>
<td>A-p.254</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quarter Plate (Shear)</td>
<td>Nov-01 Air</td>
<td>90.1</td>
<td>7075-T7351</td>
<td>1.113</td>
<td>2.0</td>
<td>244</td>
<td>MIL-HDBK-5J</td>
<td>0.22</td>
<td>2.6</td>
<td>285</td>
<td>MIL-HDBK-5J</td>
<td>0.09</td>
<td>A-p.260</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corner Plate (Tension)</td>
<td>Nov-01 Air</td>
<td>83.0</td>
<td>7075-T7351</td>
<td>1.113</td>
<td>2.0</td>
<td>407</td>
<td>MIL-HDBK-5J</td>
<td>1.20</td>
<td>2.6</td>
<td>476</td>
<td>MIL-HDBK-5J</td>
<td>0.98</td>
<td>A-p.268</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interior Plate (Shear)</td>
<td>Nov-01 Air</td>
<td>34.5</td>
<td>7075-T7351</td>
<td>1.113</td>
<td>2.0</td>
<td>244</td>
<td>MIL-HDBK-5J</td>
<td>2.18</td>
<td>2.6</td>
<td>285</td>
<td>MIL-HDBK-5J</td>
<td>1.86</td>
<td>A-p.244</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grid Wall (Bearing)</td>
<td>Sep-03 Air</td>
<td>24.8</td>
<td>6061-T6</td>
<td>1.113</td>
<td>2.0</td>
<td>421</td>
<td>MIL-HDBK-5J</td>
<td>6.63</td>
<td>2.6</td>
<td>621</td>
<td>MIL-HDBK-5J</td>
<td>7.66</td>
<td>A-p.250</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pin Socket (Bearing)</td>
<td>Sep-03 Air</td>
<td>79.8</td>
<td>6061-T6</td>
<td>1.113</td>
<td>2.0</td>
<td>421</td>
<td>MIL-HDBK-5J</td>
<td>1.37</td>
<td>2.6</td>
<td>621</td>
<td>MIL-HDBK-5J</td>
<td>1.69</td>
<td>A-p.253</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shear Pin</td>
<td>Sep-03 Air</td>
<td>69.5</td>
<td>17-4PH</td>
<td>1.113</td>
<td>2.0</td>
<td>703</td>
<td>MIL-HDBK-5J</td>
<td>3.54</td>
<td>2.6</td>
<td>786</td>
<td>MIL-HDBK-5J</td>
<td>2.91</td>
<td>A-p.251</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Requirements Compliant

Subsystem / Description

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>TKR</td>
<td></td>
</tr>
<tr>
<td>Top Flange Twist (Bending)</td>
<td>Nov-01 Air</td>
<td>22.0</td>
<td>6061-T6</td>
<td>1.1133</td>
<td>2.0</td>
<td>241</td>
<td>MIL-HDBK-5J</td>
<td>3.92</td>
<td>2.6</td>
<td>476</td>
<td>MIL-HDBK-5J</td>
<td>6.47</td>
<td>S-8.2.2.3</td>
<td></td>
</tr>
<tr>
<td>Shoulder Bolt Joint</td>
<td>GEVS Random</td>
<td>3241.0</td>
<td>A-286</td>
<td>1.114</td>
<td>2.0</td>
<td>11135</td>
<td>AMS5732H</td>
<td>0.54</td>
<td>2.6</td>
<td>17026</td>
<td>AMS5732H</td>
<td>0.81</td>
<td>A-p.297 SS</td>
<td></td>
</tr>
<tr>
<td>Grid Wall (Bearing)</td>
<td>GEVS Random</td>
<td>4051.3</td>
<td>6061-T6</td>
<td>1.1133</td>
<td>2.0</td>
<td>15700</td>
<td>Bruhn-D1.7</td>
<td>0.74</td>
<td>2.6</td>
<td>13008</td>
<td>Bruhn-D1.8</td>
<td>0.11</td>
<td>A-p.278 SS</td>
<td></td>
</tr>
<tr>
<td>ACD</td>
<td></td>
</tr>
<tr>
<td>Mid-side Pin (3/8")</td>
<td>Nov-01 MECO</td>
<td>22.6</td>
<td>A-286</td>
<td>1.114</td>
<td>2.0</td>
<td>144.6</td>
<td>0.6" Fly</td>
<td>1.88</td>
<td>2.6</td>
<td>285.6</td>
<td>0.6" Flu</td>
<td>3.37</td>
<td>S-8.6.4</td>
<td></td>
</tr>
<tr>
<td>ACD Inserts (3/8")</td>
<td>Nov-01 Air</td>
<td>276.5</td>
<td>Helicoil</td>
<td>1.114</td>
<td>2.0</td>
<td>1100</td>
<td>Vendor DS</td>
<td>0.79</td>
<td>2.6</td>
<td>1240</td>
<td>Vendor DS</td>
<td>0.55</td>
<td>S-8.6.4</td>
<td></td>
</tr>
<tr>
<td>Mid-side Bolts (3/8")</td>
<td>Nov-01 Air</td>
<td>276.5</td>
<td>A-286</td>
<td>1.114</td>
<td>2.0</td>
<td>1100</td>
<td>AMS5732H</td>
<td>0.79</td>
<td>2.6</td>
<td>1240</td>
<td>AMS5732H</td>
<td>0.55</td>
<td>S-8.6.4</td>
<td></td>
</tr>
<tr>
<td>Corner Bolts (1/4")</td>
<td>Nov-01 Air</td>
<td>276.5</td>
<td>A-286</td>
<td>1.114</td>
<td>2.0</td>
<td>733</td>
<td>AMS5732H</td>
<td>0.19</td>
<td>2.6</td>
<td>827</td>
<td>AMS5732H</td>
<td>0.03</td>
<td>S-8.6.4</td>
<td></td>
</tr>
<tr>
<td>RMB</td>
<td></td>
</tr>
<tr>
<td>Bulk Stresses</td>
<td>Nov-01 Lift</td>
<td>170.5</td>
<td>6061-T6</td>
<td>1.1144</td>
<td>1.25</td>
<td>241</td>
<td>MIL-HDBK-5J</td>
<td>0.01</td>
<td>1.40</td>
<td>276</td>
<td>MIL-HDBK-5J</td>
<td>0.04</td>
<td>T-8.4.46 X</td>
<td></td>
</tr>
<tr>
<td>RMB/RAD Pin Socket (Bearing)</td>
<td>Pre-test MECO</td>
<td>31.9</td>
<td>6061-T6</td>
<td>1.1144</td>
<td>1.25</td>
<td>421</td>
<td>MIL-HDBK-5J</td>
<td>0.03</td>
<td>1.40</td>
<td>621</td>
<td>MIL-HDBK-5J</td>
<td>0.36</td>
<td>F-8.4.47 X</td>
<td></td>
</tr>
<tr>
<td>RMB/RAD Pin Socket (Bearing)</td>
<td>Pre-test GSLT</td>
<td>408.7</td>
<td>6061-T6</td>
<td>1.1144</td>
<td>1.25</td>
<td>421</td>
<td>MIL-HDBK-5J</td>
<td>0.03</td>
<td>1.12</td>
<td>621</td>
<td>MIL-HDBK-5J</td>
<td>0.36</td>
<td>F-8.6-61</td>
<td></td>
</tr>
<tr>
<td>RMB Inserts</td>
<td>N/A EQ</td>
<td>184.6</td>
<td>Helicoil</td>
<td>1.114</td>
<td>2.0</td>
<td>590</td>
<td>Vendor DS</td>
<td>0.43</td>
<td>2.6</td>
<td>900</td>
<td>Vendor DS</td>
<td>0.68</td>
<td>F-8.6-61</td>
<td></td>
</tr>
<tr>
<td>RMB Bolts</td>
<td>N/A EQ</td>
<td>184.6</td>
<td>A-286</td>
<td>1.114</td>
<td>2.0</td>
<td>590</td>
<td>AMS5732H</td>
<td>0.43</td>
<td>2.6</td>
<td>900</td>
<td>AMS5732H</td>
<td>0.68</td>
<td>F-8.6-61</td>
<td></td>
</tr>
<tr>
<td>Lifting Clevis (Tension)</td>
<td>N/A EQ</td>
<td>86.0</td>
<td>6061-T6</td>
<td>1.1144</td>
<td>2.0</td>
<td>241</td>
<td>MIL-HDBK-5J</td>
<td>0.26</td>
<td>2.6</td>
<td>276</td>
<td>MIL-HDBK-5J</td>
<td>0.11</td>
<td>F-8.4.48 C</td>
<td></td>
</tr>
<tr>
<td>EMI Skirts</td>
<td></td>
</tr>
<tr>
<td>Bulk Stresses</td>
<td>Nov-01 Lift</td>
<td>47.9</td>
<td>6061-T6</td>
<td>1.1138</td>
<td>2.0</td>
<td>241</td>
<td>MIL-HDBK-5J</td>
<td>1.26</td>
<td>2.6</td>
<td>276</td>
<td>MIL-HDBK-5J</td>
<td>0.99</td>
<td>T-8.3-39</td>
<td></td>
</tr>
<tr>
<td>EMI Inserts (1/4")</td>
<td>Nov-01 Lift</td>
<td>324.7</td>
<td>Helicoil</td>
<td>1.114</td>
<td>2.0</td>
<td>1100</td>
<td>Vendor DS</td>
<td>0.52</td>
<td>2.6</td>
<td>1240</td>
<td>Vendor DS</td>
<td>0.32</td>
<td>S-8.6.3</td>
<td></td>
</tr>
<tr>
<td>EMI Skirt Fasteners (1/4")</td>
<td>Nov-01 Lift</td>
<td>324.7</td>
<td>A-286</td>
<td>1.114</td>
<td>2.0</td>
<td>1100</td>
<td>AMS5732H</td>
<td>0.52</td>
<td>2.6</td>
<td>1240</td>
<td>AMS5732H</td>
<td>0.32</td>
<td>S-8.6.3</td>
<td></td>
</tr>
<tr>
<td>X-LAT Plate</td>
<td></td>
</tr>
<tr>
<td>Substrate</td>
<td>Sep-03 Lift</td>
<td>67.7</td>
<td>6061-T6</td>
<td>1.1133</td>
<td>2.0</td>
<td>241</td>
<td>MIL-HDBK-5J</td>
<td>0.60</td>
<td>2.6</td>
<td>276</td>
<td>MIL-HDBK-5J</td>
<td>0.41</td>
<td>S-8.5.2</td>
<td></td>
</tr>
<tr>
<td>Pocket Stresses</td>
<td>Sep-03 Lift</td>
<td>67.7</td>
<td>6061-T6</td>
<td>1.1133</td>
<td>2.0</td>
<td>241</td>
<td>MIL-HDBK-5J</td>
<td>0.60</td>
<td>2.6</td>
<td>276</td>
<td>MIL-HDBK-5J</td>
<td>0.41</td>
<td>S-8.5.2</td>
<td></td>
</tr>
<tr>
<td>Heat Pipes</td>
<td>Sep-03 Lift</td>
<td>38.7</td>
<td>6061-T6</td>
<td>1.1133</td>
<td>2.0</td>
<td>241</td>
<td>MIL-HDBK-5J</td>
<td>1.80</td>
<td>2.6</td>
<td>276</td>
<td>MIL-HDBK-5J</td>
<td>1.46</td>
<td>S-8.5.2</td>
<td></td>
</tr>
<tr>
<td>X-LAT #8 Fasteners (shear out)</td>
<td>Sep-03 Lift</td>
<td>112.3</td>
<td>6061-T6</td>
<td>1.1133</td>
<td>2.0</td>
<td>365</td>
<td>MIL-HDBK-5J</td>
<td>0.46</td>
<td>2.6</td>
<td>476</td>
<td>MIL-HDBK-5J</td>
<td>0.46</td>
<td>A-p.342</td>
<td></td>
</tr>
</tbody>
</table>

NOTES:

1/ Shear loads at Calorimeter tabs previously analyzed
2/ Test Required; does not meet GEVS QBA: C=Coupon; X=GSLT; SS=Subsystem
3/ Test Safety factor built into stress calculation
Appropriately tested at lower levels of assembly

- LAT Instrumentation Plan → LAT-TD-00890-03
 - Flight and ground instrumentation defined
- LAT Dynamics Test Plan → LAT-MD-01196-03
 - Sine Vibration, Acoustic, and Mass Properties tests described
- All lower level flight system verification activities have been satisfactorily completed and all discrepancies are sufficiently understood to warrant proceeding
 - Engineering Test Unit testing since CDR are documented and the design reflects the results
 - Coupon Tests
 - Insert pullout and shear strength (keensert, helicoil, potted inserts, bare threads)
 - torque to preload ratios
- Flight-like coupon tests
 - Grid wing corner
 - Grid EM1X4 Stiffness Verification Test → Complete → LAT-TD-02417
- CAL EM Vibration Test → Complete → LAT-TD-01888
- TKR EM Vibration Test → Complete → LAT-TD-04310
- SC Flexure Strength and Stiffness test → Complete → LAT-TD-07813-01
Appropriately tested at lower levels of assembly (cont.)

- Flight Subsystem tests
 - Subsystem EIDP reports provide more detailed subsystem test data
 - The only subsystem test still not performed is the Radiator static test
 - Acoustic Test (Y loads) → Highest loads, Complete
 - Static Test (X & Z loads) → NOT COMPLETE → To be performed at NRL prior to LAT acoustic
 » Test Plan → LAT-TD-08047
 » Test Procedure → LAT-TD-08118
 - High margins = low risk
Appropriately tested at lower levels of assembly (cont.)

- Notable fabrication discrepancies and resolution
 - Subsystem EIDP reports provide more detailed subsystem manufacturing discrepancy information
 - Shear plates are held in place by a captive stud and nut. Substandard nut manufacturing caused galling which could lead to stud failure during attempted nut removal.
 - Resolution: do not remove defective nuts unless necessary. If necessary, split nut to preserve stud.
 - This anomaly affects 8 out of 64 studs and 4 out of 16 Calorimeters
 - Additional information can be obtained from a tech note written by J.Ku: “Use of Substandard Nut,” dated 6 Feb 2006.
Passes comprehensive systems test

- Initial flight system comprehensive performance testing has established a valid performance baseline that complies with requirements
- CPTs will be performed before and after the Vibe and Acoustic tests.
- Between vibration axes, LPT’s will be performed.
 - While vibe data is being reviewed, the LPT’s will be run concurrently
 - LPT duration is estimated to be between 6 and 8 hours
Pre-test analysis

- Analyses used to develop test plans are complete
- Sine Vibration Pre-Test Analysis → LAT-TD-08115
 - Frequency response analysis complete
 - Estimated notching calculations complete
 - Spreadsheets for real-time data reduction complete
 - Sine Vibration TRR completed successfully 24 May 2006
- Acoustic Vibration Pre-Test Analysis → LAT-TD-08116
 - Acoustic analysis in test configuration complete
 - Spreadsheets for real-time data reduction complete
 - Acoustic TRR to be performed no less than 24 hours prior to test
- Mass Properties Pre-Test Analysis → LAT-TD-08117
 - Mass properties spreadsheet with latest measured data complete
 - Spreadsheets for real-time data reduction complete
 - Mass and CG TRR to be performed no less than 24 hours prior to test
Pre-test analysis

- Pre-test analysis sample results (detailed discussion in TRR package)

[Graphs showing peak acceleration response for Response X (ALL) and Response Y (ALL)]
Environmental Test Flow

- The mechanical tests, highlighted in red boxes, are part of the environmental test sequence, shown below (see LAT-MD-02717):

![Environmental Test Flow Diagram]

- Limited Performance Test
- Comprehensive Performance Test
- SVAC Test
- LAT Functional and FSW Test
- TCS Functional Test
- EMI/EMC Emissions/Susceptibility Test
NRL Vibration Facility Layout

VIBRATION FACILITY PLAN VIEW
Sine Vibration Test Configuration

LAT Test Input (base of fixtures): T-axis

VERT. VIBE TEST MOUNTING CONFIGURATION

LAT Test Input (base of fixtures): Z-axis
Environmental Test plans and procedures

• Planning is adequate for all mechanical environmental tests
 – A comprehensive environmental test sequence at appropriate exposure levels is planned that will complete all remaining required verification activities
 • Protoflight Sine Vibration Test Procedure
 – LAT-PS-08112-01
 • Protoflight Acoustic Vibration Test Procedure
 – LAT-PS-08113-01
 • Mass Properties Test Procedure
 – LAT-PS-08114-01
 • Adequate systems performance testing is planned during and between environmental exposures so as to ensure adequate functionality or uncover any deviations
 • Adequate testing for primary and redundant elements is planned
Facilities readiness and certification

- **Unholtz-Dickie Shaker** – ready for test operations
 - Expander Head and Load Frame has successfully completed proof loading
 - Shaker has driven mass simulator in the vertical orientation
 - Horizontal Slip Table Function has been confirmed with mass simulator
- **Ling Shaker/Slip Table** – ready to support test operations
 - Support plate for temporary placement of the LAT instrument available (NOTE: will be installed at the conclusion of test operations for STP-SAT)
- **Handling Pathfinder** has been verified
 - Air Bearing Transport to be verified by May 18
 - Floor is fully supported in this move – no floor support is required
- **Accelerometers** – calibration is current
- **Amplifiers** – calibration is current
- **Crane** – certification is current
- **Hydroset** – certification is current
Facilities readiness and certification (cont.)

- Facility is ready to support LAT Vibration Test Activities
 - NOTE: As of May 22nd, STP-Sat currently testing in Vibration Facility. Scheduled to complete testing by May 24th. Sine vibration testing can start on May 26th.
- All essential test personnel available for scheduled tests
Manpower

• Available resources
 – Technical Team – conduct test, review data, ensure requirements satisfied
 • John Ku (LAT Dynamics Test Director) – Full Time
 • Bob Haynes (Test Conductor) – Full Time
 • Jim Haughton (Test Engineer) – Full Time / As-needed
 • Paul Baird (Test Engineer) – Full Time
 • Chris Fransen (Test Engineer) – As-needed
 – Mechanical Support Team – needed between axes for reconfiguration
 • Eliazar Ortiz (I&T Lead Mechanical Engineer) – See I&T Schedule
 • Mark Molini (I&T Mechanical Engineer) – See I&T Schedule
 • Dave Kiehl (I&T Mechanical Engineer) – See I&T Schedule
 • Tom Nieland (I&T Mechanical Engineer) – See I&T Schedule
 • Leo Manger (I&T Mechanical Engineer) – See I&T Schedule
 – Management – set priorities, enablers
 • Bill Raynor (NRL Facility Manager) – As-needed
 • Paul Dizon (LAT Facilities Test Director) – As-needed
 • Ken Fouts (SLAC I&T Manager) – As-needed
 • Marc Campell (Mechanical Systems Manager) – As-needed
Readiness Statement

• Work to be performed prior to environmental test
 – Sine Vibration Test
 • None → ready to start test on 26 May 2006
 – Acoustic Test
 • Complete Radiator Strength Test Procedure
 • Execute Static Test
 • Hold TRR at least 24 hours prior to test
 – Mass and CG Test
 • Update Dynamics Test plan for mass and CG test
 • Hold TRR at least 24 hours prior to test

• Pending completion of the above items for their respective tests, the integrated LAT will be ready to enter mechanical environmental tests to complete all remaining required verification activities