E161 2 μ OPTION

- REMINDER OF EXPERIMENT
- 1 MUON PROBLEMS
- 2 MUON RATES, RANDOMS ETC.
HOW TO MEASURE $\Delta g(x, Q^2)$ DIRECTLY

POLARIZED PHOTON BEAM

POLARIZED LiD TARGET

PHOTON-GLUON FUSION ($\sim 10^{-3}\sigma_{\text{tot}}$)

\[c \rightarrow D \rightarrow \mu \text{ (prompt)} \]
\[c \rightarrow D \rightarrow K \rightarrow \mu \text{ (delayed)} \]
PROPOSAL BEAM PARAMETERS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>45.1</th>
<th>48.3</th>
<th>51.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electron Energy (GeV)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electron Current (10^{10}/spill)</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>Peak Photon Energy (GeV)</td>
<td>35.0</td>
<td>40.0</td>
<td>45.0</td>
</tr>
<tr>
<td>Photons (10^7/spill)</td>
<td>2</td>
<td>1.5</td>
<td>1.1</td>
</tr>
<tr>
<td>Circular Polarization</td>
<td>0.75</td>
<td>0.80</td>
<td>0.84</td>
</tr>
<tr>
<td>x_{min}</td>
<td>0.10</td>
<td>0.12</td>
<td>0.14</td>
</tr>
<tr>
<td>μ/day($p_t > .5$; $P > 5$)</td>
<td>160,000</td>
<td>140,000</td>
<td>120,000</td>
</tr>
<tr>
<td>μ/spill($p_t > .5$; $P > 5$)</td>
<td>0.019</td>
<td>0.016</td>
<td>0.014</td>
</tr>
<tr>
<td>days (at 120 Hz, 100% efficiency)</td>
<td>9</td>
<td>10</td>
<td>11</td>
</tr>
</tbody>
</table>

** Use 48.3 GeV, Different Diamond Orientation

♥ E158 had 3.5×10^{11} e^- at 48 GeV, 250 ns spill
NUMBER OF EXPECTED SINGLE μ

SIGNAL and BACKGROUNDS

BEFORE BACKGROUND SUBTRACTION
SIGNAL/BACKGROUND

BEFORE DECAY SUBTRACTION

K=35 GeV

K=40 GeV

10<P_{\mu}<15

K=45 GeV

K=35 GeV

K=40 GeV

5<P_{\mu}<10

K=45 GeV

SIGNAL/BACKGROUND

P_{T} (GeV)
NORMAL MODE

SPECTROMETER
EXPECTED RESULTS
BY KINEMATICS

K = 35 GeV
K = 40 GeV
K = 45 GeV

10 < P_\mu < 15

K = 35 GeV
K = 40 GeV
K = 45 GeV

5 < P_\mu < 10

P_T (GeV)

ASYMMETRY

0.6 0.8 1.0 1.2 1.4
0.6 0.8 1.0 1.2 1.4
0.6 0.8 1.0 1.2 1.4
OPEN CHARM
 • DETECT SINGLE MUON
 • ORIGINAL PROPOSAL
 • VERY LOOSE CONSTRAINTS ON $c\bar{c}$ KINEMATICS
 • BACKGROUND: B-H, μ FROM π and K DECAY
 • MORE DIFFICULT THAN ANTICIPATED

OPEN CHARM
 • DETECT 2 μ FROM CHARM DECAY
 • SMALLER RATES?
 • SMALLER BACKGROUND?
 • SOMewhat BETTER KINEMATICAL CONSTRAINTS ON $c\bar{c}$
 • NO SEPARATE LOW ABSORBER RUN
LOWER RATES
 • BRANCHING RATIO
 • CUTS ON MINIMUM P_T and P

COMPENSATE WITH
 • HIGHER BEAM CURRENT
 • THICKER DIAMOND
 • LOWER P_T and P CUTS

LOOSE 2 GeV/c in ABSORBER
 • MINIMUM $P \sim 2.6$ GeV
 • $P_T > .4?$ (backgrounds)

PAIR BACKGROUNDs
 • Bethe-Heitler ($(E_1+E_2) \sim E_{\text{beam}}$)
 • VECTOR MESON DECAY ($W^2 < 1$)

RANDOM COINCIDENCES FROM SINGLES
 • TIGHT COINCIDENCE TIMING
 • EASY SUBTRACTION UNDER PEAK
 • KINEMATIC SELECTION
MONTE CARLO SIMULATION

• HERWIG 6.4
 • INCLUDE INERACTION OF UNDERLYING EVENT
 • MONOENERGETIC $E_\gamma = 45$ GeV
 → WILL DO BREMSTRULUNG SUBTRACTION
 • PROTON TARGET (NEUTRON SIMILAR)
 • PRODUCES $D_s^- > D_s^+$
FRACTION 2 mu/ 1 mu with E>2.6 GeV
FRACTION 2 $\mu[E>2.6]$ / 1 $\mu[E>5]$

- $1 \mu, P_T > 0.5$
- $1 \mu, P_T > 0.7$

P_T^μ (2μ) MINIMUM (GeV)
2 mu, pt>.4 vs E_{min}
TIME RESOLUTION
(Real Photon Collaboration Technical Note RPC-1)

<table>
<thead>
<tr>
<th>TDC LSB</th>
<th>PULSE RESOLUTION sigma (ns)</th>
<th>HITS per TRACK</th>
<th>TRACK RESOLUTION sigma (ns)</th>
</tr>
</thead>
<tbody>
<tr>
<td>.5</td>
<td>.2</td>
<td>1</td>
<td>.32</td>
</tr>
<tr>
<td>.5</td>
<td>.3</td>
<td>1</td>
<td>.39</td>
</tr>
<tr>
<td>.5</td>
<td>.4</td>
<td>1</td>
<td>.47</td>
</tr>
<tr>
<td>1.0</td>
<td>.2</td>
<td>1</td>
<td>.54</td>
</tr>
<tr>
<td>1.0</td>
<td>.3</td>
<td>1</td>
<td>.59</td>
</tr>
<tr>
<td>1.0</td>
<td>.4</td>
<td>1</td>
<td>.65</td>
</tr>
<tr>
<td>.5</td>
<td>.2</td>
<td>5</td>
<td>.15</td>
</tr>
<tr>
<td>.5</td>
<td>.3</td>
<td>5</td>
<td>.18</td>
</tr>
<tr>
<td>.5</td>
<td>.4</td>
<td>5</td>
<td>.21</td>
</tr>
<tr>
<td>1.0</td>
<td>.2</td>
<td>5</td>
<td>.24</td>
</tr>
<tr>
<td>1.0</td>
<td>.3</td>
<td>5</td>
<td>.26</td>
</tr>
<tr>
<td>1.0</td>
<td>.4</td>
<td>5</td>
<td>.29</td>
</tr>
</tbody>
</table>

Table 1: Table 1. Summary of Time resolution dependence on TDC LSB (Least Significant Bit), Pulse Resolution(sigma) and number of hits on a track.

IF \(\sigma \sim 0.2 \text{ ns}, \Rightarrow \)

FULL WIDTH = \(\pm 3\sigma = 1.2 \text{ ns} \)
UNLIKE SIGN RANDOM COINCIDENCES

TOTAL MUON SINGLES

1.5 ns TIME WINDOW

2.0 ns

2.5 ns
EXPERIMENTAL RATES

<table>
<thead>
<tr>
<th></th>
<th>E161 PROPOSAL</th>
<th>E161 POSSIBLE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 mu</td>
<td>1 mu</td>
</tr>
<tr>
<td>radiator</td>
<td>.07%</td>
<td>1.5%</td>
</tr>
<tr>
<td>e-beam/spill</td>
<td>2E10</td>
<td>5E10</td>
</tr>
<tr>
<td>photons(top 10%)</td>
<td>1.5E7</td>
<td>1E9</td>
</tr>
</tbody>
</table>

single mu/spill	0.020	1.3		
(Pt>0.5 ; P>5)				
single mu/spill	0.010	.7		
(Pt>0.7 ; P>5)				
mu/spill	0.034	2.2	0.024	.013
(Pt>0.5 ; P>3)				
mu/spill		1.5	0.011	.006
(Pt>0.6 ; P>3)				
2(tot)		.009		
3(tot)		.026		
4(tot)		.038		
6		.09		
REQUIREMENTS FOR EXPERIMENT

• 2 μ
 • ACCEPTANCE AND RESOLUTION FOR $P_T > .5$, $P > 3$
 • EXCELLENT TIME RESOLUTION
 • LOW BACKGROUND SINGLES RATES

• REDUCE SINGLES RATES
 • B-H BACKGROUND
 → MEASURE BOTH μ
 → CUT ON $E_1 + E_2 \sim E_\gamma$
 → DO BREMS SUBTRACTION
 • LOW μ RATE FROM K π DECAY
OTHER SCHEMES

• COINCIDENCE BETWEEN
 \[c \rightarrow D \rightarrow \mu \]
 \[c \rightarrow \bar{D} \rightarrow \bar{K} \rightarrow \bar{\mu} \]

 • LESS ABSORBER BY TARGET FOR K decay
 • SOME OF THIS IN RANDOM BACKGROUND
CONCLUSIONS POSSIBLE

- RANDOMS BIGGEST PROBLEM
- BACKGROUND CLEANLY SUBTRACTED
- NO NEED FOR SECOND ABSORBER SETUP
- NEED OPTIMIZATION OF CUTS
- COULD USE SOME OF BACKGROUND