

ATCA Test Platform (RCE/CIM Development Lab)

ROD Workshop 19 June, 2009

Rainer Bartoldus SLAC

Outline

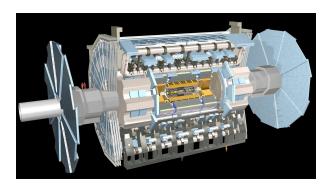
- Generic DAQ Building Blocks
 - Reconfigurable Cluster Element (RCE)
 - Cluster Interconnect (CI)
 - Substrate ATCA (Covered by Markus in previous talk)

The RCE/CIM Test Platform

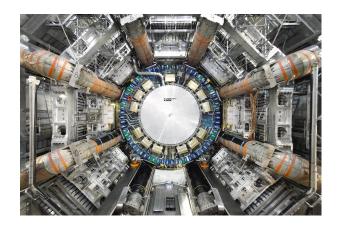
- Current Installation
- RCE Training Workshop
- Where to go from here

Looking Ahead (or in Philippe's words: "Wild Imagining")

- A Hypothetical 48-Channel Read Out Module
- Bandwidth Calculations on a Napkin
- Summary



- RCE Training Workshop Page
 - http://indico.cern.ch/conferenceDisplay.py?confId=57836
 - Links to workshop presentations on e.g. (cross-)development cycle, RTEMS, class libraries and APIs, code examples
- RCE Lab TWiki
 - https://twiki.cern.ch/twiki/bin/view/Atlas/RCEDevelopmentLab
 - Description and setup of the RCE lab infrastructure, host names, instructions, external material, e.g., ATCA manuals etc.


RCE High Lumi Mailing List

- https://groups.cern.ch/group/atlas-highlumi-RCE-development
- Discussions on Phase II upgrade studies using the RCE platform, announcements of future workshops

Building Blocks

Three Building Block Concepts

- Computational Elements
 - Must be low-cost
 - \$\$\$, footprint, power
 - Must support variety of computational models
 - Must have both flexible and performant I/O
- Mechanism to Connect Together these Elements
 - Must be low-cost
 - Must provide low-latency/high bandwidth I/O
 - Must be based on commodity (industry) protocol
 - Must support a variety of interconnect topologies
 - Hierarchical, peer-to-peer, fan-in & fan-out

• Packaging Solution for Both Element and Interconnect

- Must provide high availability
- Must allow scaling
- Must support different physical I/O interfaces
- Preferably based on a commercial standard

The Reconfigurable Cluster Element (RCE)

based on:

- System-On-Chip

technology

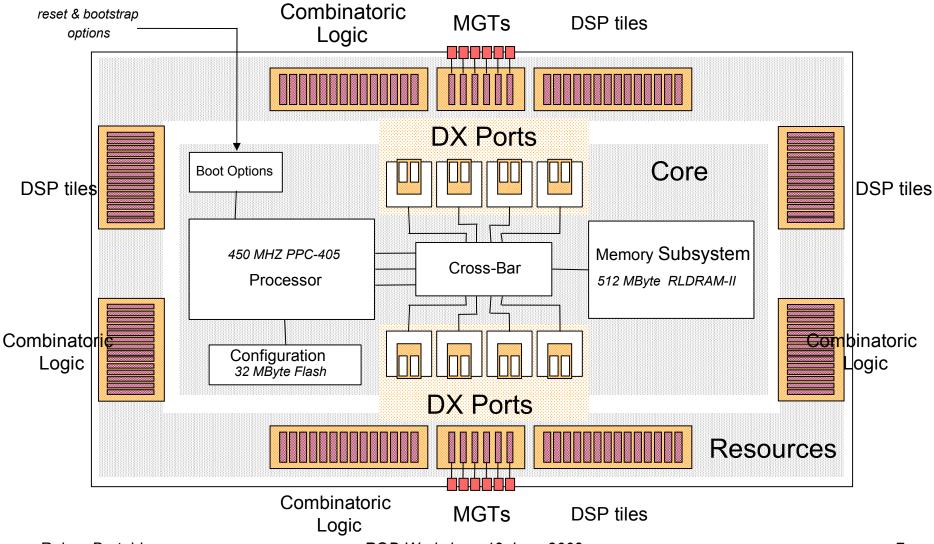
- Virtex 4 & 5

The Cluster Interconnect (CI) based on: - 10 Gb Ethernet switching

Rainer Bartoldus

ATCA:

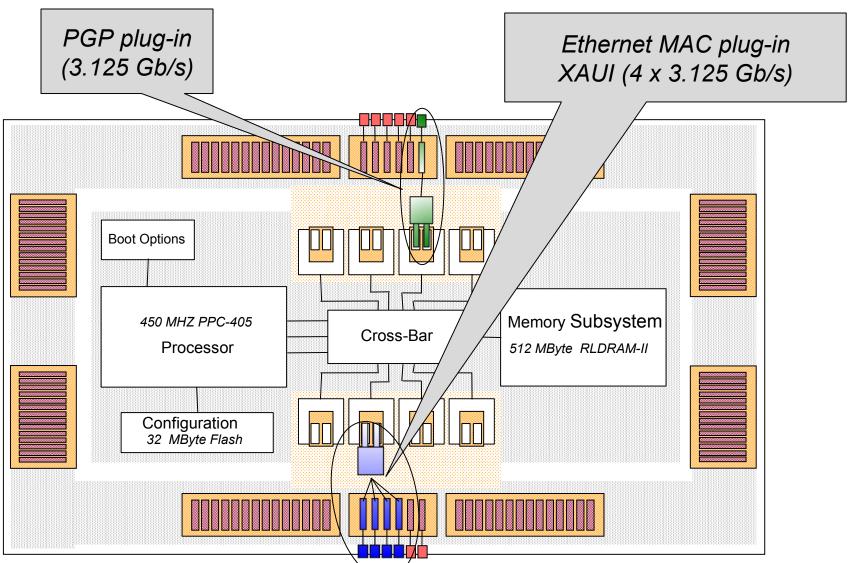
Crate based


Serial backplane

- One logical choice for a new packaging standard
 - There are other possibilities, c.f. Markus' talk
 - It has very attractive features
 - e.g. Rear Transition Module (RTM) and high-speed serial backplane, protocol-agnostic, providing different topologies
 - People who have worked with it tend to like it a lot
- It is still only a substrate for the other two building blocks
 - Albeit a rather ideal one
- The RCE/CIM concept can be mounted on other standards that provide similar benefits
 - One compelling, non-technical reason for picking ATCA now is that you can actually *buy* a crate (shelf) today
 - (BTW, as ATCA becomes increasingly popular, it no longer makes too much sense to refer to the RCE/CIM platform as the ATCA platform...)

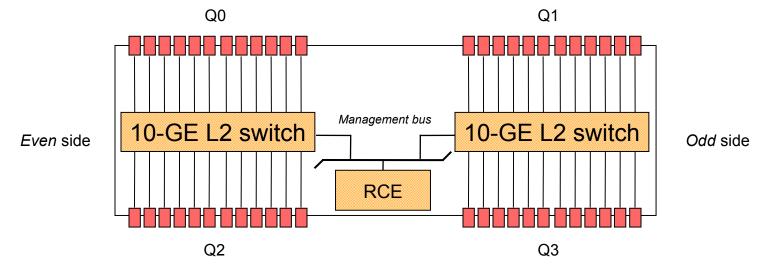
(Reconfigurable) Cluster Element (RCE)

- Cross-Development...
 - GNU cross-development environment (C & C++)
 - Remote (network) GDB debugger
 - Network console
- Operating System Support...
 - Bootstrap loader
 - Open-Source Real-Time Kernel (RTEMS)
 - POSIX-compliant interfaces
 - Standard IP network stack
 - Exception handling support
- Object-Oriented Emphasis
 - Class libraries (C++)
 - DEI support
 - Configuration interface


- Multi-Gigabit Transceivers (MGTs)
 - Up to 12 channels of
 - SER/DES
 - Input/output buffering
 - Clock recovery
 - 8b/10b encoder/decoder
 - 64b/66b encoder/decoder
 - Each channel can operate up to 6.5 Gb/s
 - Channels may be bound together for greater aggregate speed

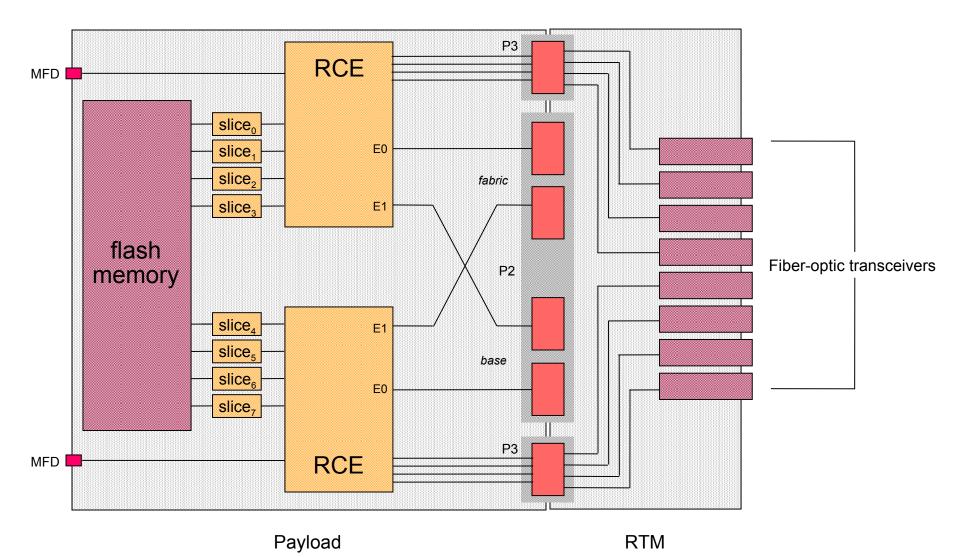
Combinatoric Logic

- Gates
- Flip-flops (block RAM)
- I/O pins
- DSP Support
 - Contains up to 192 Multiple-Accumulate-Add (MAC) units


"Plug-ins"

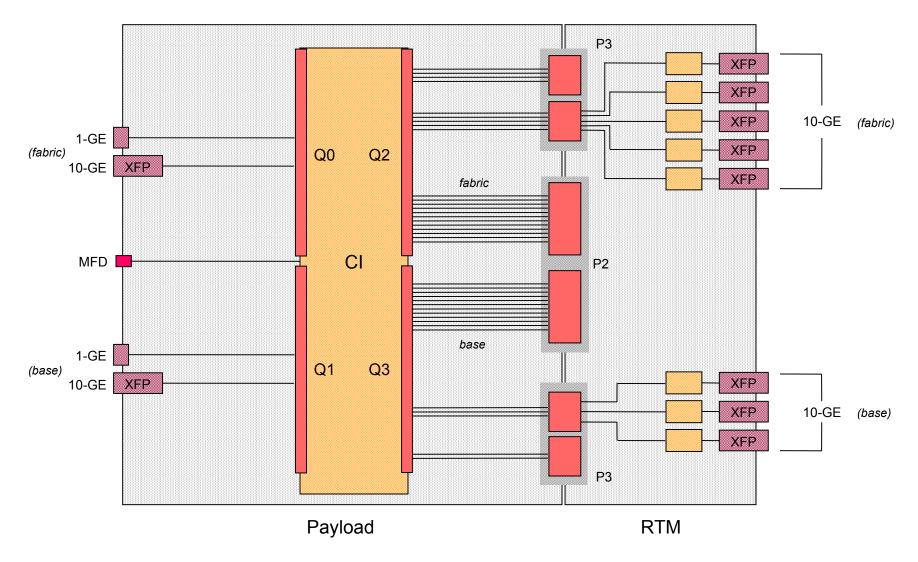
Rainer Bartoldus

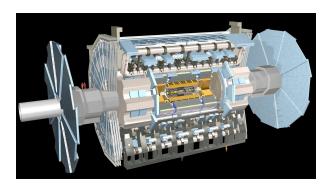
The Cluster Interconnect (CI)

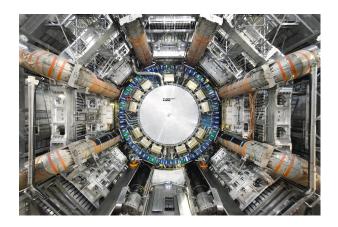


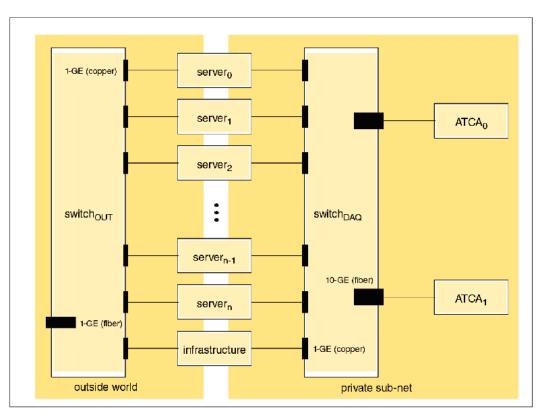
- Based on two *Fulcrum* FM224s
 - 24-port 10 GE switch
 - Is an ASIC (packaging in 1433-ball BGA)
 - 10-GE XAUI interface, however, supports multiple speeds
 - 100-BaseT, 1-GE, and 2.5 Gb/s
 - Less than 24 Watts at full capacity
 - Cut-through architecture (packet ingress/egress < 200 ns)
 - Full Layer-2 functionality (VLAN, multiple spanning tree etc.)
 - Configuration can be managed or unmanaged

Rainer Bartoldus


RCE Board + RTM (Block Diagram)


Rainer Bartoldus

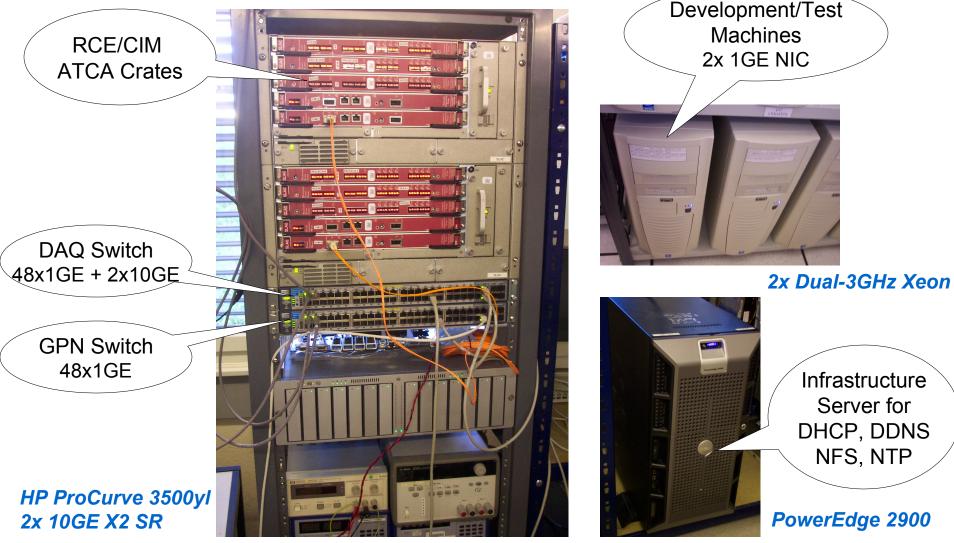

Cluster Interconnect Board + RTM



RCE Development Lab

Networking Setup

Two isolated Networks


- One public/one private
- Infrastructure server and all development servers are dual-homed
- ATCA crates only visible on private subnet

Rainer Bartoldus

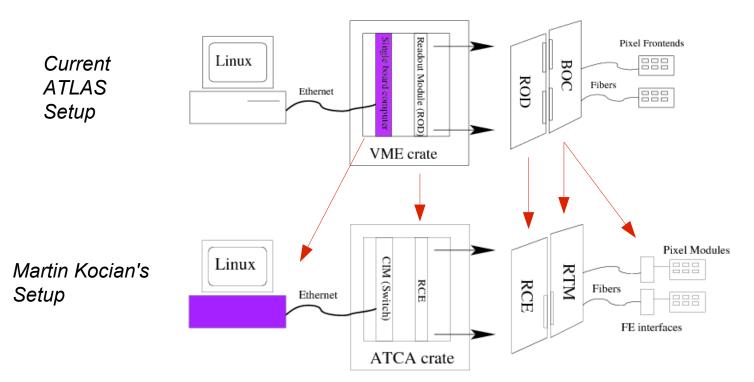
RCE/CIM Development Platform

Installation in Bldg 32

Rainer Bartoldus

- Many thanks to those at CERN who helped us put the teststand together in time for the RCE (and ROD) workshop
 - Fred Wickens, (always a great help!) for pointing us in the right direction and for always knowing what we want
 - David Francis, for listening and finding the right people to talk to, and for moving the ROD workshop
 - Stefan Stancu, for buying our switches and helping to install them in no time, and for many little things
 - Marc Dobson, for helping to set up the network and the PCs and for much good advice
 - Gokhan Unel ^(*), for finding and lending us the two PCs
 - Haimo Zobernig, Werner Wiedenmann, Neng Xu, Andre dos Anjos, and Sau Lan Wu, for kindly letting us use their rack in Lab32 and for helping with power and sudden a/c failures

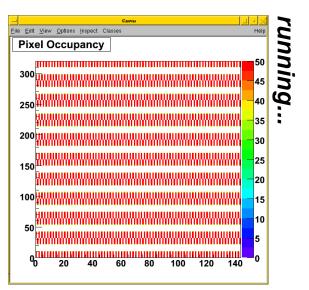
(*) PLEASE BE PATIENT!

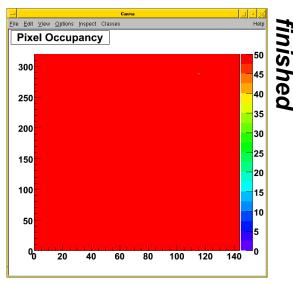

- Took place Monday and Tuesday of this week
 - 33 participants
- Tutorials, Demonstrations
- Discussion Towards Future Collaborations
- Hands-On Session
 - 18 people requested accounts (and counting)
 - Everyone learned to develop and execute "Hello World!"
 - Some learned quite a bit more than that...

After the Workshop

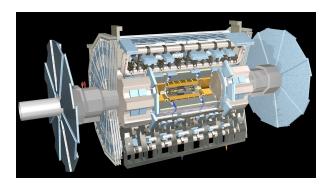
- Accounts are still in use
- 12 RCEs can be used independently
 - Contact us if you are interested in exploring one
- This training focused specifically on software
- Plan to have a future workshop on FPGA firmware

Case Study: Pixel FE Calibration

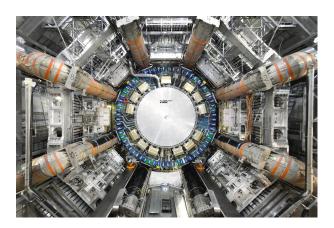

- Pixel FE Digital Test was ported from Pixel ROD to the RCE
 - Modified DSP code runs on PowerPC processor
 - Controlled by a linux host that communicates with the RCE
 - Front-End communication through fiber at 3.125 Gb/s
 - Runs successfully...

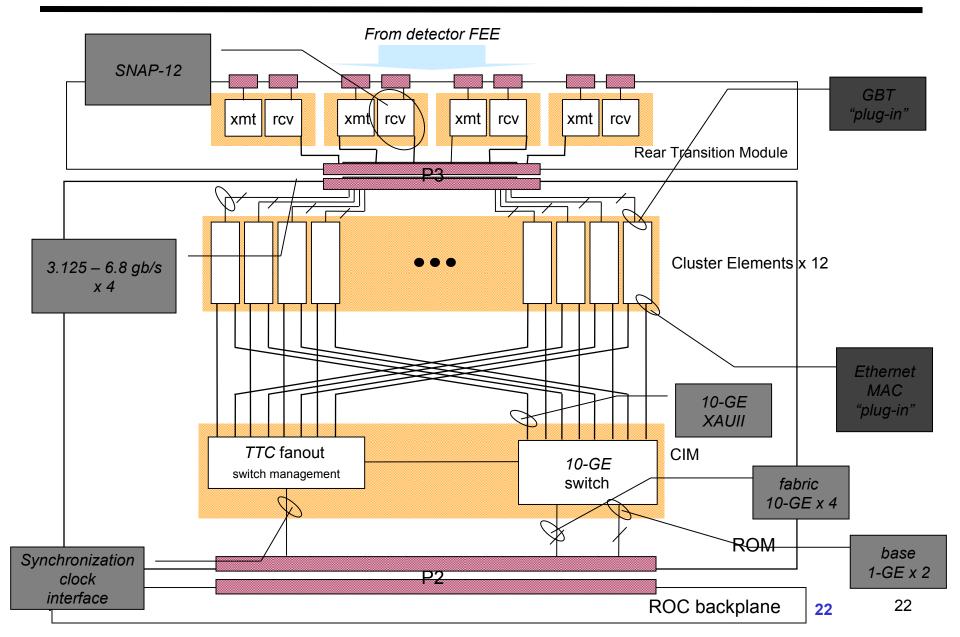


Pixel FE Digital Test on the RCE

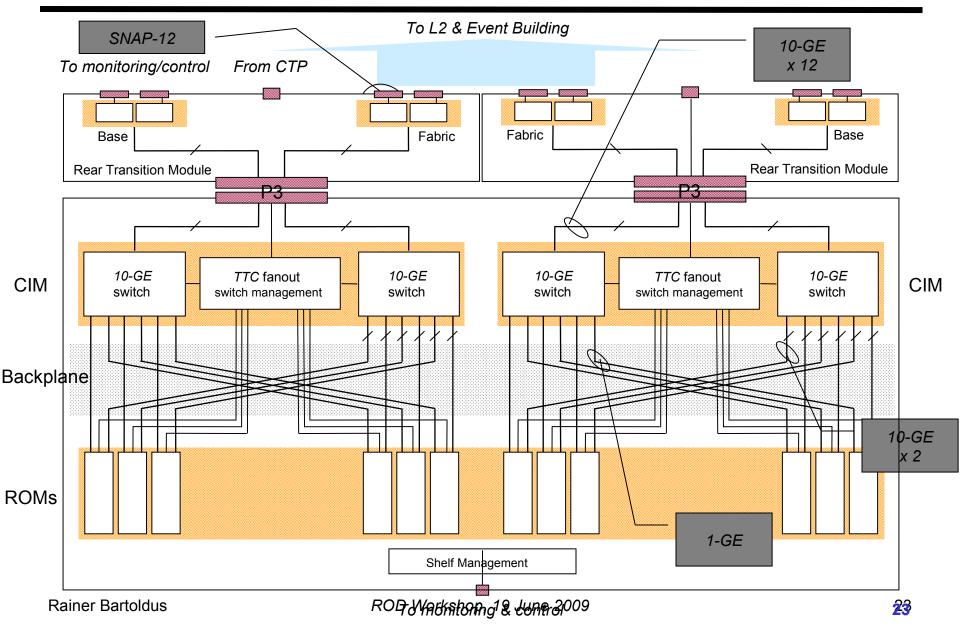

• Pixel Digital Test runs on the RCE

- Martin ran his setup in front of the workshop audience on Tuesday
- This is a concrete example of replacing the BOC/ROD/SBC(VME) chain with RTM/RCE/CIM(ATCA) and a Linux host
- The original DSP code could be ported without major changes
 - Only complication was byteswapping between PowerPC (bigendian) and DSP (little-endian)
- This example focused on reproducing functionality
- Future test cases to explore & compare bandwidth





A Hypothetical 48-channel Read-Out Module


AT LAS

Hypothetical 48-Channel Read-Out Module

Hypothetical Read-Out Crate

Current (Future) RCE Bandwidth, Toy Model

- Future ROM Board
 - Assumed to be able to host 12 RCEs in 6 FPGAs
- RTM Back Panel
 - Going from *XFP* to *Snap-12* should fit 2x8x12 fibers, in pairs of up and down (full duplex), or 96 detector channels
 - GBT at 5 GHz delivers 3.2 Gb/s usable bandwidth (may hope for 6.4 Gb/s at 10 GHz ?)
 - 307 Gb/s (614 Gb/s) per RTM
- ATCA Zone 3 Connector
 - Can go up to 400x2 differential pairs and run 3 Gb/s per pair today (possibly 10 Gb/s in the future) so not a bottleneck
- RCE/ROM Input
 - Four MGT lanes per RCE, 6.8 Gb/s today (10 Gb/s in the future)
 - 27 Gb/s (40 Gb/s) per RCE
 - 326 Gb/s (480 Gb/s) per ROM
 - Matches today's GBT rates (would be limiting factor in the future)

RCE Processing Power

- Implementation dependent, and on how much can be offloaded to DSPs or gates
 - 30-40 Gb/s per RCE or 360-480 Gb/s per ROM might be a good guess, which matches the input bandwidth
- RCE Output
 - Four lanes of MGT or 10 Gb/s (10 GE)
 - If FEX does 1:3 to 1:4 data reduction this can serve data at L1 rate

• ROM Crate (ROC) Output

- ROM output is 2 x 10 Gb/s for each star
 - 40 Gb/s per ROM on dual star
 - (15 % of L1 for tracker with in:out = 1:1 and more for calorimeter with a few times data reduction)
- Each star supports up to 6 boards
 - 240 Gb/s per ROC

- Balance of Real Estate and Throughput
 - For silicon tracker may not push GBT beyond 3.2 Gb/s and RTM to full density but rather add more ROMs to scale to more than 15% L1 accepts for L2
 - For calorimeter with data reduction of a few, keep minimum plant size with still a large fraction of L1
 - Interesting case: with data reduction of 1:10, one can serve full L1 rate to L2
- LAr ROMs
 - Input 1500 FEBs of 100 Gb/s each; at 6.4 Gb/s GBT this is 16 fibers per FEB or 6 FEBs per ROM or 250 ROMs
- Pixel ROMs
 - SLHC Pixel has 18x data rate of current detector or 800 fibers of 3.2 Gb/s
 - With 48 fibers per ROM (half) one has an 18 ROM system that could output 20% of the L1 accepts
 - Compare that to 134 ROD plus 12 ROS system

- We have started to explore a new generation DAQ platform
 - Strategy is based on the idea of modular building blocks
 - Inexpensive computational element (the RCE)
 - Interconnect mechanism (the CI)
 - Industry standard packaging (ATCA)
 - Architecture is now relatively mature
 - Both demo boards (and corresponding RTMs) are functional
 - RTEMs ported and operating
 - Network stack fully tested and functional
 - Performance and scaling meet expectations
 - Documentation is a "work-in-progress"
- This technology strongly leverages off industry innovation
 - System-On-Chip
 - High speed serial transmission
 - Low-cost, small footprint, high-speed switching (10 GE)
 - Packaging standardization (serial backplanes and RTM)

- Gained experience with these innovations will itself be valuable
- This technology offers a ready-today vehicle to explore both alternate architectures and different performance regimes
 - A test platform has been installed with RCE/CIM building blocks mounted on prototype ATCA boards
 - Workshop material is available that gives a tutorial of the platform and its use for developers
 - As an example, the Pixel FE test was ported to and run on the RCE
 - "Back of the napkin" calculations indicate that this platform is on a possible trajectory towards a phase-II ROD/ROS
- A teststand is available at CERN and everyone is welcome to explore!