```
}
// hand energies to cluster
pCluster->setEInSamples(samEnergies);
```

Note that the vector with energies is appropriately sized without explicite knowledge of the numerical values of the CaloSampling::CaloSample enumerator. Nevertheless this storage model somewhat relies on these values representing a continuously running index starting at 0 for optimized storage of these energies in the CaloCluster object (not too sparse).

void CaloCluster::setEtaInSamples(const std::vector<double>& rEtas)

 Visibility
 public

 Interface(s)
 CaloCluster::setEtaInSamples(rEtas)

 Implementation(s)
 CaloCluster::setEtaInSamples(rEtas)

 $\overline{Variable}$ \overline{Type}

 retas
 std::vector<double>&

reference to a non-modifiable vector of η s

Sets the η s of all contributing samplings in a cluster. The structure of rEtas is as discussed in the CaloCluster::setEInSamples(...) documentation on page 52 above.

void CaloCluster::setPhiInSamples(const std::vector<double>& rPhis)

Sets the φ s of all contributing samplings in a cluster. The structure of rPhis is expected as in described in the CaloCluster::setEInSamples(...) documentation on page 52 above.

const CaloCluster::moments_map& CaloCluster::moments()

Returns a reference to the non-modifiable store for ClusterMoments. This store is presently organized a map with CaloClusterMoment::MomentType key^{IX} and a number storing the actual moment. The available moments have been introduced by S. Menke. The following documentation has been directly extracted from [2].

Figure B.1 shows the principal geometric variables used to calculate the cluster moments. The basic variables are the cluster center-of-gravity \vec{c} , the principal shower axis \vec{s} , and the cell location \vec{x}_i .

IX this enumerator is actually translated into an int for technical reasons related to persistency.

Figure B.1: Cluster geometry reference. The principal shower axis \vec{s} is typically defined by the spatial cell signal distribution in the cluster. The center-of-gravity of the cluster is pointed to by \vec{c} , while the location of a cell is given by \vec{x}_i (both originating at the nominal vertex). The projection variables λ_i and r_i are also indicated.

 \vec{c} is the signal center-of-gravity of the cluster, calculated with respect to the nominal interaction point^X:

$$\vec{c} = \begin{pmatrix} c_x = \left(\sum_{i|E_i>0} E_i x_i\right) / E_{norm} \\ c_y = \left(\sum_{i|E_i>0} E_i y_i\right) / E_{norm} \\ c_z = \left(\sum_{i|E_i>0} E_i z_i\right) / E_{norm} \end{pmatrix}$$
(B.1)

Here $\vec{x}_i = (x_i, y_i, z_i)$ denotes the cell location in Euclidian coordinates. The signal normalization E_{norm} is the sum of cluster cell energies E_i , with only cells with $E_i > 0$ contributing:

$$E_{norm} = \sum_{i|E_i>0} E_i \tag{B.2}$$

The principal shower (cluster) axis \vec{s} is determined by the spatial cell correlations, given

X this reference is identical to the geometrical system of reference of the CaloCells and can change accordingly.

by:

$$\sigma_{xx} = \sum_{i|E_{i}>0} E_{i}^{2} (x_{i} - c_{x})^{2} / \sum_{i|E_{i}>0} E_{i}^{2}$$

$$\sigma_{xy} = \sum_{i|E_{i}>0} E_{i}^{2} (x_{i} - c_{x}) (y_{i} - c_{y}) / \sum_{i|E_{i}>0} E_{i}^{2} ,$$

with σ_{xz} , σ_{yy} , σ_{yz} , and σ_{zz} calculated accordingly. The axis direction is then determined by the eigenvector of the symmetric matrix σ_{ij} 's, with i, j = x, y, z, with its direction closest to \vec{c} . If the angle $\Delta \alpha = \angle (\vec{s}, \vec{c}) > 30^{\circ}$, \vec{s} is set to be identical to \vec{c} . This is typically the case when all cells in the cluster are in one longitudinal calorimter sampling only.

The cell distance from the shower axis r_i and the cell distance from the cluster center-of-gravity along the shower axis λ_i are the given by (see Figure B.1):

$$r_i = |(\vec{x_i} - \vec{c}) \times \vec{s}| \quad \text{and} \quad \lambda_i = (\vec{x_i} - \vec{c}) \cdot \vec{s}.$$
 (B.3)

Note that $r_i \geq 0$ in all cases, while λ_i is a signed quantity, with $\lambda_i < 0$ indicating a cell location along \vec{s} before the center-of-gravity \vec{c} . The description of all available cluster moments, using these and other obvious variables, follows below.

CaloClusterMoment::FIRST_PHI is the first moment $\langle \varphi \rangle$ in azimuth, defined as

$$\langle \varphi \rangle = \frac{1}{E_{norm}} \cdot \sum_{i|E_i > 0} E_i \varphi_i.$$

This moment is the measure of the central cluster azimuth. φ_i is the azimuth of cell i, typically defined by the cell's geometrical center. Wrap-around effects due to $\varphi_i \in [-\pi, +\pi]$ are corrected in the calculation of $\langle \varphi \rangle$.

CaloClusterMoment::FIRST_ETA is the first moment $\langle \eta \rangle$ in pseudorapidity, defined as

$$\langle \eta \rangle = rac{1}{E_{norm}} \cdot \sum_{i|E_i>0} E_i \eta_i$$

This moment is a measure of the central cluster pseudorapidity. The cell pseudorapidities are defined by the central rapidity of each cell in the projective calorimeters (cell represents a regular bin $(\eta_i - \Delta \eta/2, \eta_i + \Delta \eta/2)$ in the EMB, EMEC, HEC and Tile calorimeters), or by the geometrical center of the cell in linear coordinates (FCal).

CaloClusterMoment::SECOND_R is the second lateral moment $\langle r^2 \rangle$. This moment is defined with respect to the shower axis \vec{s} and the shower center \vec{c} as:

$$\left\langle r^2 \right\rangle = \frac{1}{E_{norm}} \cdot \sum_{i \mid E_i > 0} E_i r_i^2$$
 (B.4)

 r_i is calculated as shown in eq.(B.3). $\langle r^2 \rangle$ is a measure for the energy-weighted cluster width perpendicular to the shower axis \vec{s} .

CaloClusterMoment::SECOND_LAMBDA is the second longitudinal moment $\langle \lambda^2 \rangle$, again defined with respect to the shower axis \vec{s} and the shower (cluster) center \vec{c} , as

$$\left\langle \lambda^2 \right\rangle = \frac{1}{E_{norm}} \cdot \sum_{i|E_i>0} E_i \lambda_i^2 \tag{B.5}$$

This moment measures the energy-weighted longitudinal (along the shower axis) cluster extension. The calculation of the λ_i s is shown in eq.(B.3).

CaloClusterMoment::DELTA_PHI is the difference $\Delta \varphi$ in azimuth between the principal shower axis \vec{s} and the direction of the center-of-gravity \vec{c} , i.e. $\Delta \varphi = \varphi_s - \varphi_c$. The wrap-around effect of φ is taken into account, $\Delta \varphi \in [-\pi, +\pi]$. If the cluster has less than three cells, $\Delta \varphi = 0$ because the principal cluster axis cannot be measured safely (in this case, $\vec{s} \equiv \vec{c}$ by convention).

CaloClusterMoment::DELTA_THETA is the difference $\Delta\theta$ in polar angle between the principal shower axis given by \vec{s} and the direction of the center of gravity \vec{c} (see above): $\Delta\theta = \theta_s - \theta_c$. If the cluster has less than three cells, $\Delta\theta = 0$ because $\vec{s} \equiv \vec{c}$ by convention.

CaloClusterMoment::DELTA_ALPHA is the angle $\Delta \alpha$ between \vec{s} and \vec{c} , $\Delta \alpha = \angle (\vec{s}, \vec{c})$, see Figure B.1. $\Delta \alpha = 0$ if the cluster has less than three cells, as $\vec{s} \equiv \vec{c}$ by convention.

CaloClusterMoment::CENTER_X
CaloClusterMoment::CENTER_Y

CaloClusterMoment::CENTER Z are the (signal) center-of-gravity coordinates for the cluster, as measured by $\vec{c}=(c_x,c_y,c_z)$, with the obvious assignments $c_x\to CENTER_X$ etc.

CaloClusterMoment::CENTER_LAMBDA is the distance λ_c from the entry point of the shower axis \vec{s} at the front face of the calorimeter to the cluster center-of-gravity \vec{c} , measured along \vec{s} ($\lambda_c > 0$ by convention).

CaloClusterMoment::LATERAL is a measure for the normalized lateral (with respect to \vec{s}) moment μ_{\perp} . It is defined as:

$$\mu_{\perp} = \sum_{i=3}^{N_c} E_i r_i^2 / \left(
ho_0 + \sum_{i=3}^{N_c} E_i r_i^2 \right), \text{ with }
ho_0 = \sum_{i=1}^{\min(2,N_c)} E_i \cdot \max(r_i, r_{min})^2 \quad (B.6)$$

Here it is assumed that the $i=1...N_c$ cells in the cluster are ordered with respect to their energy E_i such that $E_1 > E_2 > E_3 > \cdots > E_{N_c}$, with all $E_i > 0$ (only cells with positive signals are considered here). r_{min} is a parameter of the algorithm, which accounts for some typical lateral cell extension^{XI}. The r_i are indicated in Figure B.1 and defined in eq.(B.3). ρ_0 is calculated from the cells with the largest and second largest signal only.

 μ_{\perp} is normalized in that $0 \le \mu_{\perp} < 1$, which can easily be seen by looking at its value as function of the number of cells in the cluster N_c (with $\rho_i = E_i r_i^2 > 0$ for

XI represents a rough estimate of the lateral cell location error with respect to the shower axis \vec{s} . The present default is $r_{min} = 4$ cm.

 $i \geq 3$ and ρ_0 as defined in eq.(B.6)):

$$\mu_{\perp} = \left\{ egin{array}{ll} 0 & N_c = 1,2 \ & 1/(1+
ho_0/
ho_3) & N_c = 3 \ & 1/(1+
ho_0/(
ho_3+
ho_4)) & N_c = 4 & ext{etc.} \end{array}
ight. .$$

CaloClusterMoment::LONGITUDINAL is a measure for the normalized longitudinal (with respect to \vec{s}) moment μ_{\parallel} . It is calculated in a similar fashion as the lateral normalized moment μ_{\perp} in eq.(B.6), except that the lateral projection r_i is replaced by the longitudinal projection λ_i , as defined in eq.(B.3) and shown in Figure B.1. The two cells with the largest signals then define ξ_0 similar to ρ_0 as

$$\xi_0 = \sum_{i=1}^{\min(2,N_c)} E_i \max(\lambda_i,\lambda_{min})^2.$$

Again, cells in the cluster are assumed to be ordered by their signal E_i such that $E_1 > E_{N_c}$. λ_{min} accounts for the typical logitudinal cell depth^{XII} and therefore somewhat reflects the uncertainty of the longitudinal cell location projected onto the shower axis \vec{s} .

Inspecting μ_{\parallel} as a function of the number of cells yields

$$\mu_{||} = \left\{ egin{array}{ll} 0 & N_c = 1,2 \ 1/(1+\xi_0/\xi_3) & N_c = 3 \ 1/(1+\xi_0/(\xi_3+\xi_4)) & N_c = 4 \end{array}
ight. ,$$

with $\xi_i = E_i \lambda_i^2 > 0$ for $i \geq 3$, thus the normalization $0 \leq \mu_{\parallel} < 1$.

void CaloCluster::setMoments(const moments_map& theMoments)

 Visibility
 public

 Interface(s)
 CaloCluster::setMoments(theMoments)

 Implementation(s)
 CaloCluster::setMoments(theMoments)

Variable Type Comment

 $\begin{tabular}{ll} \textbf{the Moments CaloCluster::} moments_map\& & reference to a non-modifiable map of moments \\ \hline \\ ments \\ \end{tabular}$

Sets the map of moments into the CaloCluster object. The map key is the moment type indicator CaloClusterMoment::MomentType, while the map data is the associated CaloClusterMoment.

bool CaloCluster::is_valid_sampling(CaloSampling::CaloSample& sample)

[from original implementation in LArCluster::is_valid_sampling(sample)]

XII the default value is $\lambda_{min} = 10$ cm.