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1. INTRODUCTION

The APS Survey and Alignment team uses LEICA laser trackers for the majority
of their alignment tasks. These instruments utilize several different retroreflectors for
tracking the path of the laser interferometer. Currently in use are open-air comer cubes
with an acceptance angle of 120”, comer cube prisms with an acceptance angle of &50”,
and a Cat’s eye with an acceptance angle of k60” (Fig. 1) [I]. Best measurement results
can be achieved by using an open-air comer cube that eliminates the need for the laser
beam to travel through a different medium before it returns to the instrument detector.
However, the trade off is a small acceptance angle.

Open air comer cube Comer cube prism Cat’s eye

Fig. 1 Comer cube types

In order to overcome the limitations of the small acceptance angles, Takatsuji et
al. [2][3]  have proposed the creation of a full-viewing-angle retroreflector. Based on the
notion that the radius R1 of a common Cat’s eye (Fig. 1) is proportional to R2, one can
write:

R, = (n - I)R, (1 1).

In the case that n, the refractive index of glass, equals 2, the radii RI and R2 are identical,
and one can create a solid sphere Cat’s eye. This design has the advantages that no
adhesives are used to bond the two hemispheres together, misalignments between the
hemispheres are not an issue, and most importantly, larger acceptance angles are
possible. This paper shows the results of our ray tracing calculations characterizing  the
geometrical optics.
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2. CALCULATIONS AND RESULTS

2.1 Single Ray-Tracing Calculations

For the purpose of this exercise the origin of the coordinate system is located at
the center of the Cat’s eye with radius R and refractive index n. The light ray bundle is
symmetric to the z-axis pointing counter parallel to the incoming rays. Every incident ray
can be represented by its impact parameter b, which can be expressed as

b = R sin@). (24

Due to the cylindrical symmetry, the intensity distribution of the beam can be represented
as a function f(b) depending only on the radial coordinate b (Fig. 2).

Fig. 2 Ray-tracing schematic for a retroreflecting sphere

From the law of reflection one can ascertain that the inner angles 4 of the small
triangles at the circle perimeter are identical because each triangle has two sides equal to
the radius R of the sphere. Thus

@+41 =495’ a n d  ~=4~-4. (2.2)

The law of refraction on the other hand dictates that

sin( 4) = n sin@‘) . (2.3)

Using this information, one can derive the formula for the deflection anglex  to be

x = 4sin-’ sin -24
( 1

.
n (2.4)

At a distance z from the origin the transverse coordinate of the reflected ray is given by

r(X,z)ERsin(@+X)+zsinx, cw



taking into account the fact that z >> R. This transfer function maps the transverse
coordinate of an incident ray to that of the corresponding reflected ray. It can be
approximated by a Taylor series expansion

Using this approximation, the maximum deflection angle xrn is

The exact back reflection occurs for x = 0 when

4=$?i0=2J2-n=&&

Equation (2.6) can now be written as

P-6)

(2 7).

(2.8)

On the other hand, the intensity distribution of the reflected beam is inversely
proportional to the illuminated areas. Therefore one can equate

F (r,z) = f [b(r)]5  = f wn41
R2 sin 24

z--$[Rsin(e+x)+zsinx]2  ’
(2.10)

where F(r,z) is the intensity distribution of the reflected beam and fEb(r)]  is the intensity
distribution of the input beam. For simplicity of the following derivations we assumed a
constant intensity profile of the input beam and not a Gaussian distribution. For incident
rays near the angle of maximum positive deflection,

dr-=
db Rcosb

=O,

the intensity distribution F(r, z) approaches infinity. This leads to the condition

&L Rcos(4  + x)
dgh - zcos~+Rcos(q5+~)

= 0, (z << R) .

(2.11)

(2.12)

In order to understand how this occurs, the relationship between + and x, as expressed in
Equation (2.4), is plotted in Fig. 3 for refractive indices above and below n = 2. The
curves in this figure are (A) for a refractive index n = 1.98, (B) n = 2.00, and (C) n =
2.02.
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Fig. 3 Transfer function for incident and reflected rays of different
refractive indices n [(A) n=1.98,  (B) n=2.00, and (C) n=2.02]

l One can observe that the on-axis incident ray (4 = 0) is reflected back on axis
(jy=O).

l For n > 2.00 all rays are “over bent,” leading to negitive  reflection angles x
for all incident ray heights. The reflected rays are not focused but spread out.

l For n < 2.00, only rays far away from the optical axis (4~ $0) are “over bent.”
In the vicinity of the zero incidence angle, the reflected angle increases until it
reaches a maximum deflection angle xrn.  Near the maximum (4 - &J, all
incident rays are mapped into a very narrow range of reflection angles
(x - xm). These reflected rays near the maximum angle xrn lead to a well-
defined annular light cone.

l The case n = 2.00 can be viewed as a special case for n < 2.00, when the
maximum deflection occurs on-axis at q&, = 0, and the “cone” has a zero
opening angle.

2.2 Vertex and Opening Angle of the Light Cone

From the preceding discussion, one can see that the focusing for n < 2.00 plays
the central role in allowing reflected rays to form a tight ray bundle. Its properties need to
be studied carefully.



First, the formation of the light cone is unique. It is not formed by Gaussian
optics, where the transfer function from the incident height 4 to the exit angle x is linear.
Instead, the Cat’s eye focuses through a singularity in the derivative of the transfer
function.

While a Gaussian optical system often produces a light beam with a focal point in
real space, the Cat’s eye produces a ring in the momentum space, or an annular light cone
in real space. The virtual vertex of the cone is located at

= Rw4nz -
sinx,  .

(2.13)

The maximum reflection angle xrn can be obtained from the derivative of Equation (2.4):

- 24m = 2 sin-’ (2.14)

The light cone angle is determined solely by the index of refraction and is
independent of the geometric dimensions of the sphere. Figure 4 shows the dependence
of the light cone angle on the refractive index where xrn is depicted on a log scale. In
order to use a glass sphere as a retroreflector, a small opening angle of the light cone is
required. For example, if we wish to keep the diameter of the reflected light cone less
than 20 mm at 10 m from the reflector, the opening angle should satisfy

10 = 1.0 (mrad) .
‘,< 10m

(2.15)

In this case the refractive index of the glass should be in the range 1.988 < n < 2.000 .

1.970 1.975 1.980 1.985 1.990 1.995 2.000

INDEX OF REFRACTION, n

Fig. 4 Maximum deflection angle of the Cat’s eye, as a function of n



2.3 Efficiency of the Whole-Viewing-Angle Retroreflector

Undesirable reflections and transmissions from the sphere surfaces and the
divergence of the beam diminish the light intensity of the reflected light. The total
efficiency q due to the transmission and reflection losses qR, at the three surface,
boundaries between the glass sphere and air is

For a whole viewing angle reflector, all surfaces are identical and hence

If the coating of the glass surface is designed appropriately to maximize the total
efficiency, then

4 2
f7 =- when qR =-.

max  27 3
(2.18)

This means that by using this reflector, about 85% of the incoming light intensity
is lost due to the reflections and transmissions at the sphere surfaces. This is a very poor
efficiency factor that can only be overcome by increasing the beam intensity. However,
by limiting the acceptance angle to about 180” and mirror coating one half of the sphere,
one can gain almost 100% efficiency.

For analyzing the effects of the diverging beam, we a&ume that the incoming
laser beam has a uniform intensity within its radius (b < p), and the detector can make use
of the reflected beam within a limited divergence angle 6. In order to contain all of the
reflected light within the usable solid angle, the divergence angle 6 has to be equal or
larger than the reflected ray angle x:

sin 4
6 > x = 4siri’ -

( 1n
-2&for  OQ<sin-’  % .

0

One way to satisfy this condition is to use a large sphere. However, in order to
optimize the design, we want to know the minimum usable sphere size. Figure 5
illustrates the conditions for selecting the minimum sphere.
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Fig. 5 Illustration of the conditions for calculating
the minimum sphere radius

Two steps are required to solve this problem. In the first step the material of the
reflector has to be chosen such that the maximum deflection angle is within the
acceptance window of the detector. The detector acceptance window is shown in Fig. 5
by the region -6 I x I S and the material of the reflector is chosen such that x, < 6.

Using Equation (2.7), it follows that
4

2-n i
s2xm=4 -T- ’( 1 (2.20)

or, when solved for the refractive index n,

nZ2-1.196t (2.2 1)

In the second step we chose the radius of the sphere such that all incident rays fall
within the window with a radius of p 2 R& . Using the approximation provided in

Equation (2.9), one can derive the value of & as

If we use Equation (2.20) to relax (2.22),  we obtain

(2.22)

(2.23)



With that, the following simple solution can be obtained:

(2.24)

Hence, the radius of the acceptance aperture for the incidence laser beam is given by

p-x, = R&, =g&.
Js

(2.25)

3. DESIGN STUDY FOR A CAT’S EYE

In this section, we apply the results from the theoretical derivations to design a Cat’s
eye and use the ray tracing program ZEMAX [4] to verify the conclusions of the
analytical studies.

The following conditions for our design are assumed:

1. The incident laser beam radius b,, is 4 mm.

2. The reflected beam should have an opening angle of
less than 0.2 mrad.

Using Equation (2.21) with 6 = 0.2 x 10w3,  we obtain the constrain on the material of the
Cat’s eye:

2.00 > n 2 2 - 1.19-a:  = 1.9959. ’ (3.1)

We found that O’HARA [5] glass type LAH79 satisfies this requirement with

n = 1.99613 at 2 = 632.8 (nm) . (3 2).

For this glass, the light cone angle is given by Equation (2.20)

x -4
m- = 0.186 (mrad),

and the approximate acceptance angle is given by Equation (2.24)

Applying Equation
can be is obtained:

= 0.144 (rad) .

(3.3)

(2.25), the minimum radius of the sphere satisfying the first condition

R=P= 4 (mm>

4
=28(mm).

xm 0.144 (3.5)



In order to validate the chosen parameters and verify the analytical calculations in
the previous section, we used ZEMAX to perform ray tracing calculations for various
glass spheres with radii R = 12.5 mm, 20 mm, and 40 mm. The incident beam is
represented by a bundle of parallel rays packed randomly in a cylinder with a 4-mm
radius.

Case 1: Sphere radius R = 20 mm

(A: 0.375 m) (B: 1.5 m) (C: 3.0 m) (D: 6.0 m)

Fig. 6 Ray tracing spot diagrams for O’HARA glass sphere type LAH79
with a diameter of 40 mm and an incident beam with a diameter of 8 mm.
Each box is a 10 mm x 10 mm square.

Figure 6 shows the spot diagrams for a 20-mm-radius  sphere, with screen
locations at 0.375 m, 1.5 m, 3.0 m, and 6.0 m from the sphere, respectively. At very short
distances from the sphere, the reflected ray coordinates are dominated by the initial
displacement, essentially the first term of Equation (3.6),  and the beam distribution is a
good approximation of the incident beam. As the light propagates away from the sphere,
the reflection angle becomes important. At 1.5 m from the source, an annular structure
can be clearly seen. While the outer diameter of the ring is given approximately by

Pouter = R sin &,, + z sin x, , (3.6)

the over-bent marginal rays give the inner diameter, via Equation (2.5),  as

Pinner = Rsin4m,,  + zsinX(q&J.

Due to the negative deflection angle, the marginal rays close in on the optical axis
near z = 3.0 m. At the distance of 6 m, the marginal rays overshoot the boundary of the
light cone.



Case 2: Sphere radius R = 40 mm

I I

(A: 0.375 m)
I I

(B: 1.5 m) (C: 3.0 m) (D: 6.0 m)

Fig. 7 Ray tracing spot diagrams for O’HARA glass sphere type LAH79
with a diameter of 80 mrn and an incident beam with a diameter of 8 mm.
Each box is a 10 mm x 10 mm square.

Figure 7 shows the spot diagrams for the sphere with a 40-mm radius, using the same
spacing for the screen locations. The sphere is slightly larger than the minimum required
radius of 28 mm as calculated by Equation (3.5). In this case the beam is entirely
enclosed in the acceptance window, and therefore all reflected rays are contained within
the light cone. One can see that the spot increases with distance at the rate of the opening
angle calculated in Equation (3.3).

Case 3: Sphere radius R = 12.5 mm

(A: 0.375 m)
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(B: 1.5 m)

P

f

(C: 3.0 m) (D: 6.0 m)

Fig. 8 Ray tracing spot diagrams for O’HARA glass sphere type LAH79 with a
diameter of 25 mm and an incident beam with a diameter of 8 mm. In this case
each box shows a different size.

Figure 8 shows the spot diagram for a sphere with a 12.5~mm  radius, also with the screen
located at 0.375, 1.5, 3.0, and 6.0 m from the sphere, respectively. In this case a large
portion of the beam is beyond the acceptance window, and the reflected beam expands
rapidly at large distances so that different box sizes were necessary to show the results.
At 0.375 m the box size is 10 mm square, at 1.5 m it is 50 mm square, at 3.0 m it is
100 mm square, and at 6 m a box size of 200 mm is required. However, when zooming in
on the center of the spot, the central feature of an annular light ring is still detectable.
This design implies a reduction in the intensity of the center of the reflected beam.



4. DISCUSSION OF THE RESULTS

Previous studies determined the ideal refractive index (n) to be 2.0 for a whole-
viewing-angle Cat’s eye. In contrast, we found in this work that the formation of a light
cone for n < 2.00 is particularly important for the application of this type of reflector. The
annular light cone is formed by a singularity in the derivative of the transfer function of
the reflector. Its opening angle depends only on the refractive index of the sphere.

The numerical ray tracing has verified several major conclusions from the preceding
sections:

(1) We did find the existence of an annular light cone with a sharp boundary as predicted
by theory through the ray tracing results.

2R
(2) The acceptance aperture defined by -40

lb
is a quantitative measure for predicting the

performance of the Cat’s eye. When the beam is smaller than or comparable to the
acceptance aperture, the light rays are well contained in the cone. When the beam is
significantly larger than the acceptance aperture, the reflected light rays rapidly
diverge.

(3) The optical material with n = 2.00 is not optimized in its acceptance aperture. It is
better to use material with n < 2.0. The optimal index of refraction is n = 2 - 1.19. 62’3,
for a given beam divergence S.

Future studies are planned and some modifications are expected. Efficiency
calculations based on a realistic beam intensity distribution such  as a Gaussian beam
profile is expected to provide a better estimate in the form of a continuous function. It
will also replace the approximation for the acceptance aperture. Furthermore, a wave
optics calculation of the intensity of the reflected light is expected to remove the
singularity near the cone boundary. Finally, it would be desirable to perform a
comparison with respect to the existing Cat’s eye design shown in Figure 1 .

5. CONCLUSION

In Section 2 we derived the analytical expressions for choosing the index of refraction
n of a glass sphere based on the specifications of the reflected beam. We also provided an
approximation for calculating the minimum radius of a reflector sphere based on
efficiency considerations. Finally, in section 3, the analytically derived results were
confirmed in a design study for a Cat’s eye.

The major result of this analysis is the discovery that a Cat’s eye, unlike Gaussian
optics, focuses through a singularity in the derivative of the transfer function, producing
an annular light cone. Utilizing a sufficiently large sphere radius, this property can be
used to design a whole-viewing-angle retroreflector. However, as shown in section 2.3,
the intensity efficiency of this design is less than optimal.
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