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1. Introduction

   The NSRL (National Synchrotron radiation Laboratory) accelerator consists
of three major parts: the 800 Mev electron storage r ing, the transport l ine and
the 200 Mev electron l inac. As the main parts of NSRL, the storage ring
contains twelve dipoles, thirty-two quadrupoles, fourteen sextupoles, some
kickers and septums etc. All these units are distributed separately along 66.13
meters circumference. During installation of the storage r ing, an al ignment
network was established, which is cal led the Construction Control Network.
When adopting the network, we accurately installed al l these units into the
storage ring in according to the designed posit ion accuracy. Theoretically, this
Construction Control Network can be used to monitor plane deformation as i t
has been adequately amended after the storage r ing had been constructed. But
in the several passed years, some new insertion units have been instal led in the
storage ring, some new photon beams and experiment stations have been
established and some power cupboards have been put at the centre of storage
ring. So some observation l ines between two reference points of the
Construction Control Network have been interrupted and the network can not
be re-establ ished. In order to survey the posit ion changing condit ion of all the
units in the storage ring, a new network must be established. In 1997, we
designed a Plane Deformation Monitoring Network.

2. Comparison of Plane Construction Control Network and Deformation
Monitoring Network

   The Construction Control Network was a tr i lateration network. Its purpose
was to align and install the units in the storage ring. Dipoles were chosen as
the primary reference for the alignment and instal lation. All other components
situated between two dipoles on straight-l ine sections are easi ly aligned from
the two adjacent dipoles by means of optical instrumentation and other
techniques.
   It included 28 reference points. Each dipole had two reference points. The
three dipoles in same quadrant have a coincident curvature centre, which was
also set up as a reference point. Among these 28 knots, a same precision
tri lateration network consisting of 86 sides was established. This geodetic
figure is composed of distance measurement only and is stiffened between
magnets intentionally (see Figure1).



       Figure 1-Construction Control Network    Figure 2-Deformation Monitoring Network

   All the distance measurements were performed with DISTINVAR because the
expansion coefficient of invar wire is very low, but its sensit ivi ty to vibration
can not be ignored. A laser interferometer was used and a secondary bench was
set temporari ly to cal ibrate invar wires at t imes during the measurement.
   Among the 86 sides in the network, 48 sides are essential to guarantee the
radial and tangential posit ion precision of dipoles and the other 36 sides are
redundant surveying sides in order to enhance the relative location accuracy of
magnets. According to physical design, the allowable locating errors of dipoles
are
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   Differing from that of the Construction Control Network, the purpose of
Deformation Monitoring Network is to monitor the displacement of the
components in the storage ring. In condition of common operation of the
accelerator and not moving any instruments in the centre of the r ing, it is
required to monitor the displacement of units in the ring by adopting this
monitoring network.
   The monitoring network has the distinguishing features of high precision,
being able to repeat observation and using accurate data processing methods.
After optimally designing the accuracy target, datum, rel iabi l i ty standard,
sensit ivity target, separating capacity and cost target, we obtain a optimal
network in 1997 see Figure 2.
   Because angle measurement accuracy is influenced by error of centre,
focusing error, bearing error and horizontal dioptre, the Deformation
Monitoring Network is also a tri lateration network.
   There are 99 sides in the network. All the distance measurements are
performed with DISTINVAR. For the calculation of the networks, the
Construction Control Network had six init ial sides. Adopting indirect



adjustment principle, i t was easy to obtain the theoretical coordinates of
dipoles. After coordinate optimum fit t ing, the magnets were installed
according to a new coordinate system in which twelve dipoles were adjusted to
their ideal posit ions with minimum shift. But for the Deformation Monitor ing
Network, there are no init ial sides. Rank
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observational equations, is not equal to the amount of unknown parameters t .
There is

3)( −= tBR ,                                  [2]
where the rank defect free network adjustment method is used.

3. Basal Principle of Rank Defect Free Network Adjustment Method.

   Suppose in a free network, which has not any init ials, observed values areL
n×1

,

which are the same accuracy and independent. If the essential observational
number is 0t , the number of unknowns isu , and u t> 0 , then

� �X X X= +0 δ ,                                 [3]
where X̂  is value of assessment of unknown X, 0X  is the approximate value

of X̂  and X̂δ  is the correction values of 0X . If the l inearized observation
equation is
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then the rank of coefficient matr ix
un

B
×

is R B t u( ) = < , and it is not a matr ix of full

column rank.
   Now letX̂ , which is the value of assessment of unknown X, replace X, and

V−  replace∆ , the true error. Then the error equation is

LlBXXBV −++= 00ˆδ .                               [5]
   Let the constant term be l BX l L= + −0 0 , then

V B X l= +δ � .                                     [6]
   In accordance with the principle of indirect adjustment, the normal equation
is

B B X B lT Tδ � + = 0 ,                                  [7]
where TB is the transposed matrix of B.
   Let
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Then the normal equation is

N X Wδ � + = 0 .                                   [9]
   If the B is a matrix of full column rank, then N is a ful l rank matrix, and

equation [9] has a unique solut ionX̂δ . But now the rank of matr ix B is smaller
then the number of unknowns, soR N t u( ) = < , and the determinantN = 0. N is a

singular or rank defect matrix, and the rank defect isd u t= − . So equation [9]
is a series of compatible equations, which have infinite resolutions.



   To get the unique optimal estimation value of X̂δ , a new principle must be
forwarded. That is, the estimation value obtained must satisfy the fol lowing
condition from the principle of least squares:

minˆˆ =XX Tδδ .                                [10]

   The estimation value satisfying this requirement is marked asδ ��X .
   In accordance with l inear algebra, the equations of [6], which are
inconsistent simultaneous equations whose coefficient matrix has no full
column rank, have a unique resolution of least squares:

δ ��X =–B+ l,                              [11]
where +B  is the least norm inverse of matr ix B.
   The compatible simultaneous equations [9], whose coefficient matr ix N is
singular, also have a unique resolution of minimum norm:

δ ��X =– Nm
− W=– Nm

− BTl,                         [12]

where −
mN  is the generalised inverse matrix of N, which is also cal led the least

norm inverse matrix. −
mN  satisfies
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   Because N + , the least norm inverse of N, also satisfies equation set [13],
another unique minimum norm resolution is obtained.

δ ��X N W N B lT= − = −+ + .                        [14]
   Actually, the minimum norm resolut ion of the least squares not only satisfies
the principle of the least squares but satisfies the equations [10] also.
   The resolut ions of equations [11], [12] and [14] are the same. They are al l
the resolut ion of equation set [4].

   In order to get the resolut ion of δ ��X , the general ised inverse matrix B+  or Nm
−

or N +  must be obtained first.
   What must be pointed is that, in accordance with equation set [10], the final
result of X is changed as the approximate value X 0  changes. There are a few

methods to solve the δ ��X , but here just one method called the method of false
observation value is discussed.
   Two theorems about generalized inverse matrices Nm

−  and N +  can be proven

using l inear algebra. Let the ranks of B and −N  ( BBT= ) be R B R N t u( ) ( )= = < ,
and the rank defect be d u t= − , and suppose a matrix with ful l column rank
is G R G d

t d×
=( ( ) ) , and let

Q B B GGT T= + −( ) 1 ,
Then:
(1) If G satisfies

B G
n t t d n d× × ×

= 0                                [15]

then
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(2) If G satisfies the following equation in addit ion to equation [15] :
G G ET

d t d d d× × ×
=

1
 ,                             [17]

then
N Q GGT+ = − .                            [18]

   So, if the matrix G
t d×

 which satisfies equations [15] and [17] has been found,

then N m
− , B+ andN + can be obtained.

   Substituting equation [16] into [11] and [12], when G satisfies BG=0, gives

δ �� ( ) ( )X QB l B B GG B lT T T T= − = − + −1 ,                 [19]
and

δ �� ( )X QW QB l B B GG B lT T T T= − = − = − + −1 ,             [20]
respectively.
   When G satisfies BG=0 and G G ET =  as well, substituting equation [18] into
[14] gives

                        δ �� ( )X Q GG B l QB l GG B lT T T T T= − − = − +
                     = − + −( )B B GG B lT T T1 .                              [21]

   It can be seen that the results of equations [19], [20] and [21] are the same.
They al l can be described as

( )B B GGT T+ δδ ��X +BTl = 0.                         [22]
   Actually, equation [22] is norm equations satisfying the following equations:
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   The first equation is just the equation [6], the original error equation, and the
second corresponds to the error equation which has a group of false observation
values whose number is d (=u-t). The method used here is called the method of
false observation values.

   If the G has been obtained, the resolution of δ ��X  can be obtained easily from
equation [22].
   For tr i lateration network, the matr ix G is
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where xi
0, yi

0 (i  =1,2,...m) are the approximate coordinate values of the knots in
the network. In the plane deformation monitoring network, m= 28 , and 2m=u.



4. Calculation of the Plane Deformation Monitoring Network

   In the optimum Plane Deformation Monitoring Network, there are 28
reference points and 99 sides. The plane coordinate values of each point are
chosen as unknowns, and the theoretical coordinate values as their approximate
values, and the distance calculated from the theoretical coordinate values wil l
be the approximate distance of every side.
   Suppose the length of side between two undetermined points j and k is Ljk .

Their adjustment coordinate values xj, yj, xk, and ky  are unknowns. Their

theoretical coordinates x0
j, y

0
j, x

0
k and 0

ky are the approximate values of unknowns.

Let δxj, δyj, δxk and kyδ be the correction values of unknowns, then
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and then the adjustment equation is

L V x x y yjk jk k j k j+ = − + −( ) ( )2 2  .                [26]

   Substituting equation [25] into the above equation, and then expanding i t in
Taylor series and taking the l inear term gives
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   Substituting S x x y yjk k j k j
0 0 0 2 0 0 2= − + −( ) ( )  into the above equation, the error

equation is obtained:
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where ∆x0
jk , ∆0

jk are the coordinate increments between j and k calculated from the
approximate coordinate values . The sum of the first four terms on right side is
the correction value of length of side led to by coordinate correction value, so
the equation is also called the correction value equation.
   If there are init ials, for example, j  is a known datum point, then 
δxj  = 0,δyj  = 0 and the result obtained is
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   But as discussed above, the network has no init ials, so the equation (27) is the
error equation of the network, and the absolute values of coefficients of jxδ



and kxδ , jyδ  and kyδ  are equal. The consistent term is equal to the difference of

approximate length of side minus the distance of observation.
   For the network, there are 99 error equations having the same form as
equation [27]. The theoretical coordinates of 28 datum points are shown in
Table 1. The approximate length of 99 sides can be calculated from their
coordinates.
   Alternatively, equation [27] may be derived in matr ix form as

V B X l
99 1 99 5656 1 99 1× × × ×

= +δ ,                            [29]

where B is the coefficient matrix. This is the fundamental form of the error
equation. 

156×
Xδ  represents the correction values of 56 approximate coordinates of the 28 datum

points.
   By performing the least square method, the normal equation from equation
[29] is

N X U
56 5656 1 56 1 56 1

0
× × × ×

+ =δ ,                            [30]
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





=

=

×××

×××

,

,

1999956156

569999565656

lBU

BBN
T

T

                             [31]

respectively.
   As discussed above, the coefficient matr ix B is not a full rank matr ix,
R(B)=56-3=53, and N

56 56×
is a singular matrix, R(N)=53, rank defect d=3. So the normal

equations have no unique solut ion. The rank defect free network adjustment
method is used here.

Table 1 - Theoretical Coordinates of the 28 Datum Points

Point x Y point x y
1 -9576.10 -4300.18 15 10848.91 450.00
2 -10026.10 -3520.76 16 10848.91 -450.00
3 -10848.91 -450.00 17 10026.10 -3520.76
4 -10848.91 450.00 18 9576.10 -4300.18
5 -10026.10 3520.76 19 4300.18 -9576.10
6 -9576.10 4300.18 20 3520.76 -10026.10
7 -4300.18 9576.10 21 450.00 -10848.91
8 -3520.76 10026.10 22 -450.00 -10848.91
9 -450.00 10848.91 23 -3520.76 -10026.10
10 450.00 10848.91 24 -4300.18 -9576.10
11 3520.76 10026.10 25 -3027.97 0.00
12 4300.18 9576.10 26 0.00 3027.97
13 9576.10 4300.18 27 3027.97 0.00
14 10026.10 3520.76 28 0.00 -3027.97



   Consider a matrix G
56 3×

, and letQ B B GGT T= + −( ) 1 . Adopting the false

observation method, the normal equation is obtained:
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where δ ��X  is the estimated value of Xδ  which satisfies min=xxTδδ .
For a tri lateration network, the matr ix G is
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   Substituting G and TG  into equation [32] gives

δ �� ( )X B B GG B l QB lT T T T

56 1

1

×

−= − + = .                      [34]

   Then substitut ing it into simultaneous equation [25], the adjustment value of
coordinates of every datum point are obtained.

   Substituting δ ��X
56 1×

 into equation [29], the correction values of length of

observational sides can be obtained. Adding the respective length of

observational sides, the adjustment values of length of every side �L
99 1×

 can be

obtained.

5. Conclusion

   In 1997, we performed a survey for the network. Simultaneously we designed
a computer program to calculate the Plane Deformation Monitor ing Network
adopting the method above. The result we obtained is most satisfactory.
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