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Abstract

To design modern accelerators a profound knowledge of
eigenmodes of RF-cavities is required. For normal conduc-
ting as well as for superconducting cavities MAFIA is a
well established tool to determine the eigenmodes by nu-
merical means. However, the 3-dimensional treatment of
multicell cavities lacks from available computer power on a
usual high end workstation. Therefore the present approach
uses a parallel SIMD supercomputer (APE-100) to compu-
te the numerical expensive part of the MAFIA-algorithm.
The system matrix, incorporating geometry and material
information, is transfered to the APE-100 during a normal
MAFIA-session using a command provided by the MAFIA
toolkit (MTK). Then, on the APE-100 the lowest eigen-
values and their corresponding eigenvectors of the system
matrix are determined by means of a conjugate gradient al-
gorithm [3]. The result of the diagonalization procedure is
then read back to the MAFIA host where further data ana-
lysis and visualization can be done.

1 INTRODUCTION

The construction of modern accelerators is usually sup-
ported by the numerical determination of eigenmodes in the
accelerating cavities. Often the rotational symmetry of the
cavity is used to simplify the numerical simulation. How-
ever, in cases where the cavity plus attached rf–components
lacks rotational symmetry a fully 3–dimensional treatment
of Maxwell’s equations is necessary which requires more
computer power than is available on a normal high end
workstation. In addition the 3–dimensional approach al-
lows for the simulation of fabrication errors and surface
roughness which are usually not considered to have rota-
tional symmetry.

In the framework of the Finite Integration Technique
(FIT) developed by Weiland and coworkers[1] Maxwell’s
equations in integral representation are transformed to a set
of matrix equations. Using rectangular grids the discretiza-
tion volume is partitioned in two sets of cells which can be
considered dual. In the case of determining the eigenmodes
of a cavity the grid voltages along neighboring gridpoints
are the degrees of freedom of the resulting eigenvalue prob-
lem. It turns out that the so–called system matrix con-
nects grid voltages of a single cell only to grid voltages of
adjacent cells. This “next neighbor connection”–property
makes the eigenvalue problem especially well suited to be
solved on an APE–100 supercomputer for this type of com-

puter is capable of a very fast data exchange between neigh-
boring nodes.

APE–100 supercomputers are mainly used for in QCD
theory where a profound experience in solving eigenvalue
problems [3] does exist. However, the parallel structure of
the computer requires the use of special programming tools
and a language (TAO) dedicated to the computer topol-
ogy which is inefficient in programming advanced file IO,
string evaluation and managing pointers.

Therefore the parsing of the geometry input, which is
mainly a linear task, is left to MAFIA which is running on a
usual workstation. The resulting system matrix incorporat-
ing geometry and material information is transfered to the
APE–100 by means of the MAFIA toolkit (MTK). Then,
on the APE–100 supercomputer the numerical expensive
task of finding the lowest eigenvalues and corresponding
eigenvectors of a large sparse matrix is performed. The re-
sult of the diagonalization procedure is then read back to
the MAFIA host where further data analysis and visualiza-
tion can be done.

The paper is organized as follows: in section 2 a short
overview of the Finite Integration Technique and the APE–
100 topology is given. In the next section the matrix vec-
tor multiplication which is crucial for the used algorithm is
considered in detail. In section 4 a performance analysis
of the conjugate gradient algorithm used in this approach is
given.

2 FINITE INTEGRATION TECHNIQUE AND THE
APE–100 TOPOLOGY

The Finite Integration Technique is based on a discretiza-
tion of Maxwell’s equations using a set of two rectangu-
lar grids which can be considered dual to each other [1].
The integral representation of Maxwell’s equations is trans-
ferred to a discrete version by specifying the integration
paths as to be along the edges of the discretization cell. For
the case of area integrals the 6 bordering rectangles of the
cell are chosen as the integration area. The degrees of free-
dom in the discretized version of Maxwell’s equations are
not the fields itself, moreover for example the grid volt-
age along neighboring grid points or the flux over a cell
border are used. Therefore the discretized Maxwell’s equa-
tions remain mathematically equivalent to the continuous
case. There is no discretization error and the discretized
Maxwell’s equations exactly obey the conservation law for
charge and current density.



An important feature of the matrix equations is its lo-
cality. Actually this is due to the fact that the chosen in-
tegration space is restricted to the neighboring cells of the
selected degree of freedom. As a consequence the result-
ing system matrix which eigensystem has to be determined
is sparse with a priori known pattern of entries. A de-
tailed treatment of the theory yields that 13 elements of the
system matrix are non zero for each degree of freedom.
These elements connect to degrees of freedom belonging
to neighboring cells.

The locality of the matrix equations can be exploited on
APE–100 in a quite natural way. The nodes of the APE–
100 supercomputer are arranged on a three–dimensional
rectangular grid (see Fig.1) as is the grid used for the dis-
cretization of Maxwell’s equations. The cells of the dis-
cretization volume are distributed to the nodes so that each
processor is responsible for its own segment of real space.

Figure 1: Topology of the APE–100 (4x4x4 nodes). Be-
tween adjacent processors there is a fast data transfer which
is about 4 times slower than local memory access. The
whole cube is subject to periodic boundary conditions in
x–,y– and z–direction resulting in a hyper torus. Due to the
SIMD character of the APE–100 no latency time occurs on
data transmission.

The matrix–vector multiplication is then mainly a local
operation on each node. Only in cases where the cell lies
on the segment boundary data exchange with neighboring
nodes will occur. The APE–100 is perfectly suited to such
a situation because the SIMD character of the supercom-
puter accounts for a very fast data transfer with neighboring
nodes without latency.

One drawback of numerical determination of eigen-
modes is that the solution space is composed of two so-
lution spaces – one holding the eigenmodes which are
searched for and one holding the so–called ghost modes.
For FIT there is a workaround excellently described in [2].
Another difficulty arises from the periodic boundary con-
ditions which are built in to the APE–100 topology but are
not implemented in the MAFIA package for all coordinate
directions. Therefore boundary flags are necessary in the
present approach.

3 DATA DISTRIBUTION STRATEGY OF THE
SYSTEM MATRIX

Heart of the conjugate gradient algorithm described in[3] is
the Ritz method applied to the functional�

�(~z) =
h~z; Â~zi

h~z; ~zi
; (1)

whereA denotes the system matrix andz is the vector of
grid voltages. Given a random initial vector the algorithm
searches for the minimum of� in the orthogonal subspace
of all previously determined eigenvectors. Acceleration of
the algorithm is achieved by using exact diagonalization in
the subspace spanned by the numerically computed eigen-
vectors.

As usual for algorithms determining the eigensystem of
large spares matrices the efficient coding of the matrix vec-
tor multiplication routine is crucial for a high performance
of the algorithm. Therefore the matrix–vector multiplica-
tion routine was coded using the extract–replace method of
TAO allowing for efficient use of all of the 128 registers of
the FPU.

Figure 2: To avoid “IF” statements and flags in the TAO
source code the total number of cells residing on one node
is divided into 27 parts with definite neighboring relations.
For the bulk region (fully inside the box) all neighboring
cells are in the local memory of the node. For cells in other
pieces it is known at programming time which part of the
matrix–vector multiplication requires remote data access.

In addition care had to be taken in the multiplication rou-
tine where boundaries of the segments were involved. To
simplify the coding of the multiplication loop by avoid-
ing IF statements and flags definite neighbor relations of
the cells were introduced by splitting up the whole seg-
ment into 27 pieces (see Fig.2). As a consequence the
source code of the matrix–vector multiplication is some-
what blown up since every single multiplication operation
has to be written 27 times for every piece of the segment.



4 PERFORMANCE OF THE ALGORITHM

The APE–100 supercomputer is mainly used for long run-
ning simulations in the field of lattice QCD and similar the-
ories in high energy physics. To give easy access to a com-
munity familiar with MAFIA a software interface to the
APE–100 has been written. After defining the geometry in
the M (mesh) module of MAFIA, the E module is started
and a new command “MaxqSolve” is issued which writes
the system matrix to disk and submits the appropriate script
to the APE–100 queue. After the solver on the APE–100
has finished the user can read in the resulting eigensystem
by giving the “MaxqGetResults” command to the E mod-
ule. The whole data transfer to and from the APE–100 is
hidden from the user.
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Figure 3: Schematic view of the software interface

The total number of gridpoints which can be used in the
discretization is restricted due to memory limitations. Fur-
thermore the used eigensolver needs additional memory for
every eigenvector to be found. The memory needed per
gridpoint is 28 octets for the system matrix and 12 octets
for every eigenvector. This leads to

Mtotal = 12 � N � (n+ 5) octets (2)

for an expression for the total memory used.N is the num-
ber of gridpoints andn denotes the number of eigenvectors
to be found.

On the QH2 (8x8x4) with 16 MB per node eq. (2) results
in:

number of eigenvectors available gridpoints
1 60.000.000
2 51.000.000
5 36.000.000
10 24.000.000
20 14.000.000
50 6.500.000
100 3.400.000

In principle the last table shows the applicability of the
proposed approach. However, investigations considering
the role of the single precision floating point arithmetic of
the APE–100 are to be done. The scalar products are re-
ported to be sensitive to the single precision / double preci-
sion problematics. Therefore the scalar products are coded
using a software emulation of double precision arithmetics.

The same procedure has already been applied in the orig-
inal MAFIA package to save memory and keep rounding
errors at a minimum.

5 CONCLUSIONS

The calculation of eigenmodes on a three–dimensional ba-
sis is crucial for the simulation of accelerating cavities.
Only a fully three–dimensional treatment of Maxwell’s
equations can account for effects connected to fabrication
errors and surface roughness and most important to effects
which arise from devices such as input couplers or HOM–
couplers. These coupling devices inevitably break the ro-
tational symmetry of the cavity cannot be neglected for the
determination of eigenmodes of the cavity. However, the
lack of computional power on high end workstations nor-
mally avoids the inclusion of the three–dimensional effects
described above. Therefore in the present paper an ap-
proach to a supercomputer solution of the eigenmode prob-
lem of superconducting cavities has been made.

Though there is no real example of the approach until
now the performance analysis of the algorithm shows that
determining the eigenmodes of superconducting cavities on
APE–100 supercomputers is a reasonable idea to overcome
the limits of high end workstations. Work for the applica-
tion to parts of the TESLA structure is in progress.
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