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Abstract

In this paper, an object-oriented design for beam dynam-
ics simulations in accelerators is implemented using For-
tran language. Using module and derived type in F90, we
can emulate object concept in the object-oriented design.
This gives Fortran code a better maintainability, reusability,
and extensibility. The overhead associated with the object-
oriented implementation has only a minor effect on perfor-
mance.

1 INTRODUCTION

Object-oriented design is being widely applied in com-
puter software engineering to implement complex codes
which possess good maintainability, reusability, and exten-
sibility. This technique also enables the encapsulation of
detailed machine specific information, thereby achieving
good portability.

In the parallel computing environment, such efforts
have mostly been directed to the design of object-oriented
frameworks using explicit message passing and C++ [1].
Using such an object-oriented framework reduces the ex-
tent of difficulty of parallel programming based on mes-
sage passing library and also allows good performance to
be achieved. However, in the physics community, e.g.,
the accelerator community, Fortran still remains a popu-
lar language for demanding numerical simulations. Even
here, implementation of object-oriented design can be use-
ful since using F90 with Message Passing Interface (MPI)
in this way encapsulates the detailed communication syntax
and eases the design and implementation of parallel simu-
lations.

In contrast to the message passing paradigm discussed
above, High Performance Fortran (HPF) as a high level
data parallel programming language also has its place in
scientific computation. Its advantages of programming
ease, reasonable performance, and portability between par-
allel and serial machines makes it attractive for use in many
applications [2, 3, 4]. In HPF, inter-processor communica-
tion is handled by the compiler. The programmer generally
only needs to explicitly specify the data distribution on par-
allel processors and parallel loops through directives com-
ments [5]. This makes parallel programming more trans-
parent and allows portability between parallel and serial
machines.

Though not designed with object-orientation in view,
Fortran 90 already contains some features of object-
oriented programming languages with user defined generic
data type, pointer, and modules [6, 7]. These features have
been successfully applied in plasma simulations to build

object-oriented Fortran codes [8]. Since HPF is supposed
to contain all the features of Fortran 90, it is also possible
in theory to emulate object-oriented programming using
the intrinsic module command and derived types in HPF.
Thus, the application of object-oriented design with HPF
can combine the traditional advantages of object-oriented
methods along with the ease of parallel programming that
characterizes HPF.

In this paper: The physical system is described in Sec-
tion 2, object-oriented design is presented in Section 3, par-
allel implementation using F90 with MPI is given in Sec-
tion 4, data parallel implementation with HPF is discussed
in Section 5, numerical results on the SGI/Cray T3E-900
and SGI Origin2000 are presented in Section 6, and the
conclusions summarized in Section 7.

2 PHYSICAL SYSTEM

The physical system for beam dynamics studies consists of
the beam and the accelerating system which in turn con-
tains a number of accelerating, guiding, and focusing ele-
ments. The forces acting on particles are due to externally
applied fields and the inter-particle Coulomb field.

The two-dimensional application we will consider be-
low is a study of the transverse dynamics of an infinitely
long intense beam transporting across various focusing el-
ements along the z-axis. We note that since accelerating,
guiding, and focusing elements are arranged along z, it is
usual practice in accelerator simulations to take z to be the
independent variable rather than the time t. In this case,
the original six dimensional equations reduce to a set of
four dimensional z-dependent equations
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Here, f is the particle distribution function in phase space,
� is the space charge potential, � is the charge density
from the distribution function, a prime superscript denotes
a derivative with respect to z. The above equations is
solved using a particle-based method. Particle simulations
have much lower storage cost (in three spatial dimensions,
N3 vs. N6) and have the crucial advantage of not break-
ing down when phase space structure falls below the grid
resolution.

In the case of a linear focusing system, the Hamiltonian
for single particle dynamics is

H =
1

2m
(p2x + p2y) +Hext +Hself (3)



where m is the mass of the particle, p is the momentum,
Hext is the external field contribution, and Hself is the
space charge contribution. Numerical solution of the par-
ticle equation of motion is easy to obtain using a split-
operator sympletic integration method. First, one breaks up
the above Hamiltonian into two parts, i.e. H = H1 +H2,
where it is assumed that particle motion under either one of
H1 or H2 can be solved for exactly. In that case, a second
order integrator is defined by the map

M(�) =M1(�=2)M2(�)M1(�=2) (4)

where M represents a map to integrate the particle equa-
tion of motion from one state to another state in phase
space, M1 is the map corresponding to H1, M2 is the
map corresponding to H2, and � is the step size [9].

Often, the beam size is much smaller than the inside wall
radius of the accelerator, in which case we may treat the
beam as an isolated system. This results in open bound-
ary conditions for the Poisson equation which can then be
solved by a Fast Fourier Transform (FFT) technique using
a method given by Hockney [10]. While the beam moves
through the accelerator, its cross section varies along the
axis. The computational grid used for solving the Poisson
equation has therefore to be adjusted in size in order to fol-
low the beam with a constant transverse resolution.

3 OBJECT-ORIENTED DESIGN

Object-oriented design is a method of design encompassing
the process of object-oriented decomposition [11]. During
the process of object-oriented design, the complexity of the
system is decomposed into a number of objects which are
instantiated from their corresponding classes. An object, as
defined by Booch, is a tangible entity which exhibits some
well defined behaviors, and a class is a set of objects that
share a common structure and a common behavior. There
are four fundamental elements contained in the concept of
an object-oriented model. These are abstraction, encapsu-
lation, modularity and hierarchy.

Abstraction is a process that extracts the essential com-
mon characteristics of a set of objects that distinguish it
from other sets of objects. It provides an outside view
of an object and defines a conceptual boundary of the ob-
ject. Encapsulation is also called “information hiding.” It
is complementary to abstraction and screens from outside
viewers all inside details of an object that do not contribute
to its essential characteristics. Modularity is a property
used to decompose a system into a set of meaningful, co-
hesive, and loosely coupled modules. Each module con-
sists of a number of classes and objects working together
to model specific aspects of system behavior. Hierarchy es-
tablishes the inter-relationships among classes in an object-
oriented model by ranking or ordering the abstractions. The
two most important relationships of class are inheritance
and aggregation. The inheritance specifies a generaliza-
tion/specialization hierarchy, i.e. “kind of” hierarchy. The

aggregation specifies a containing hierarchy, i.e. “part of”
hierarchy.

In objected-oriented design, after analysis of the (com-
plex) physical system, the system is first decomposed into
simpler physical modules. Next, objects are identified in-
side each module. Then, classes are abstracted from these
objects. Each class has interfaces to communicate with
the outside environment. Then relationships are built up
among different classes and objects. These classes and ob-
jects are implemented in a concrete language representa-
tion. The implemented classes and objects are tested sepa-
rately and then put into the physical module. Each module
is tested separately before it is assembled into the whole
program. Finally, the whole program is tested to meet the
requirements of problem.

Figure 1: The class diagram of the accelerator beam dy-
namics system.

An application of the object-oriented design methodol-
ogy outlined above to beam dynamics studies in accelera-
tors results in the decomposition of the physical system into
five modules. The first module handles the particle infor-
mation consisting of Beam and BeamBC classes. The sec-
ond module handles information regarding quantities de-
fined on the field grid, and contains the FieldQuant and
FieldBC classes. The third module handles the external fo-
cusing and accelerating information containing the Beam-
LineElem base class and its derived classes. The fourth
module handles the computational domain geometry con-
taining Geometry class. The last module provides auxiliary
functions containing InOut and Timer classes. The class
diagram of the object-oriented model for a beam dynamics
study is presented in Fig. 1. In this class diagram, we do
not include the auxiliary classes used in the parallel imple-
mentation using MPI. These classes are implemented using
both F90 with MPI and HPF in our parallel beam dynamics
simulations.

4 PARALLEL IMPLEMENTATION WITH F90
AND MPI

MPI is a standard library of message passing parallel pro-
gramming bound to C and F77 [12]. It provides a direct
access to the physical architecture. The programmer has to
control the data distribution on the processors and commu-



nications among processors when information from more
than one processor is required. This gives it the advan-
tages of flexibility and better performance. However, this
also increases the difficulty of parallel programming. Ap-
plying object-oriented design to parallel message passing
programming helps to encapsulate the details of commu-
nications and data distributions. This enables the user to
manage the applications at a higher level.

To implement the object-oriented design with F90 and
MPI, we add some new classes to the original auxiliary
module to handle explicit communications. These classes
are Pgrid2d, Communication, and Utility. The Pgrid2d
class defines a logical two dimension Cartesian proces-
sor grid. The Communication class contains the pub-
lic functions to handle the major communications used in
the particle-in-cell simulation using MPI. The Utility class
contains three public functions to encapsulate the explicit
communications used in the general purpose function op-
erations, e.g. matrix transpose. With the help of auxil-
iary class module, the particle simulation using beam, field,
beam line element, and geometry modules can be built up
without knowing the details of the communications. In
the following, we give an example of implementing the
F90 to emulate polymorphism in the beam line elements
in our simulation. The polymorphism is done in an object-
oriented language by defining a virtual base class and dif-
ferent derived classes. By assigning the address of a de-
rived class object to a pointer object of base class, the pro-
cedure using a single base object name can select the appro-
priate member function to execute based on the actual class
object referenced in the pointer object. In our beam dy-
namics simulation with F90, we define a base class Beam-
LineEment, and three derived classes for the drift, focus-
ing, and defocusing beam line elements. The scaled down
sketch of these classes are below:

module BeamLineElemclass
use QuadrupoleFclass
use QuadrupoleDclass
use DriftTubeclass
type BeamLineElem

private
type (QuadrupoleF), pointer :: pquadf
type (QuadrupoleD), pointer :: pquadd
type (DriftTube), pointer :: pdrift

end type BeamLineElem
interface assign_BeamLineElem

module procedure assign_quadf,
assign_quadd,assign_drift

end interface
contains
function assign_quadf(pquadf) result(ppquadf)
function assign_quadd(pquadd) result(ppquadd)
function assign_drift(tdrift) result(ppdrift)
subroutine update_BeamLineElem(this,z0,z1)
end module BeamLineElemclass

module DriftTubeclass
integer, private, parameter :: Nparam = 1
type DriftTube

integer :: Nseg
real :: Length

real, dimension(Nparam) :: Param
end type DriftTube

contains
subroutine update_DriftTube(this,z0,z1)

end module DriftTubeclass

Here, only the drift tube class is given for the derived
class since the other two derived classes have a similar
structure to the drift tube class. Since there is no direct sup-
port of inheritance in F90, we define a derived type in the
BeamLineElem base class which contains three pointers to
the derived classes as private data members. An overloaded
function assign BeamLineElem which includes three as-
signment functions is used to initialize the base BeamLi-
neElem class object with different derived class object ad-
dresses. In each assignment function, only one pointer is
initialized and the other two pointers are set to null. In the
public function update BeamLineElem of the base class,
updating operations from derived classes are selected ac-
cording to the different actual object association of point-
ers in the base class data member. The polymorphism is
achieved by calling this subroutine with a constructed base
BeamLineElem object in the application. The data mem-
bers in the derived beam line element class consist of the
number of steps of particle movement inside the beam line,
length, and strength of the beam line element.

5 DATA PARALLEL IMPLEMENTATION WITH
HPF

Data parallel programming using HPF provides a relatively
easy route to parallel programming. Present compilers,
however, are still not fully mature and performance penal-
ties are often encountered.

In principle, using derived type with private data member
in an HPF module containing some public member func-
tions, it is possible to emulate a class in the same way as
F90 does. Unfortunately, most present HPF compilers do
not have adequate support for derived type and dynamically
distributed arrays. For example, the PGHPF compiler does
not support pointer to derived type, deferred array com-
ponent in derived type, and parallel distribution of array
component to processors in derived type [13]. These re-
strictions prevent one from defining a generic derived type
with dynamic array component inside a module. Emulating
object-oriented polymorphism is not possible for the same
reason. Therefore, to implement the object-oriented design
discussed in the Section 3, we have to modify some classes
in our implementation from a generic type to a physical
module which contains some private data members and
public member functions. The public member functions
contained in the physical module provide the behaviors of
the module.

In the previous section, we showed that polymorphism
could be used in the implementation of beam line elements.
However, due to the absence of support for a pointer to
derived type in the PGHPF compiler, we have to include
the choice of different concrete beam line elements in the
BeamlineElem module as separate subroutines. A scaled



down sketch of beam line element module is presented in
the following.

module BeamLineElem_class
integer, private, parameter :: Nparam = 1
type BeamLineElem

private
integer :: Nseg
real :: Length
real, dimension(Nparam) :: Param

end type BeamLineElem
contains
subroutine update_BeamLineElem(this,flag,

z0,z1)
subroutine beamlnDeQuad(this,z0,z1)
subroutine beamlnFoQuad(this,z0,z1)
subroutine beamlndefault(this,z0,z1)

end module BeamLineElem_class

Parallel loop implementation uses the HPF commands
Do Independent and Forall. Forall is used in the case of a
single statement with regular array index access. Do Inde-
pendent is used to fuse several statements into one loop to
take advantage of the spatial and temporal locality of data
in cache. (In the data scattering from grid to particle sub-
routine, we observed that using Do Independent is about a
factor of ten faster than using Forall in the indirect array
index access loop.)

6 NUMERICAL RESULTS

The above object-based Fortran programs were applied to
the study of proton beam transport through a periodic con-
stant focusing, drift, defocusing, drift (FODO) channel.
Here, we report our experience running on the SGI/Cray
T3E-900 and SGI Origin2000.

The problem we tested here consists of 10 FODO peri-
ods. Our simulation used 250; 000 particles with a 128 �
128 field mesh grids. Fig 2 gives the performance of using
the object-based F90 with MPI on the SGI/Cray T3E-900.
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Figure 2: The speedup of the object-based F90/MPI code
as a function of the number PEs on SGI/Cray T3E-900.

We measured the speedup of 5 major subroutines scaled
by the number of processors. These are map1, map2, scat-
tering, depositing and FFT subroutines. The speedup is cal-
culated as the ratio of time measured on one processor to

the time measured on a given number of processors. The
main program speedup reaches about 26 on 64 processors.
The total efficiency (ratio of speedup to number of proces-
sors) here is relatively low due to the heavy communication
costs and small problem size. Checking the performance
of separate subroutines, we see that the FFT subroutine is
the least scalable due to the global nature of the Fourier
transform resulting in communication overhead. On the
other hand, depositing and scattering subroutines show a
superlinear trend which give a speedup close to 100 on 64
processors. This is because, in the F90/MPI code, since
both subroutines are done locally on each processor, the re-
sulting more efficient use of cache may provide superlinear
speedup in the operation of these subroutines. The perfor-
mance of the corresponding HPF code is given in Fig 3.

0

10

20

30

40

50

60

70

0 1 2 3 4 5 6

sp
ee

du
p

log(PEs)

’main’
’map1’
’map2’

’deposit’
’scatter’

’FFT’

Figure 3: The speedup of the object-based HPF code as a
function of the number PEs on SGI/Cray T3E-900.

We see that the main program speedup increases to
32 processors and saturates beyond that. Checking the
speedup on individual subroutines, we find that the grid-
particle scatter subroutine reaches its maximum speedup
on 16 processors due to heavy communication in the in-
direct array index access. This becomes a bottleneck for
the case of a large number of processors. The FFT subrou-
tine reaches its maximum speedup on 32 processors. The
map1 and map2 subroutines scale very well with increas-
ing number of processors. The depositing subroutine does
not scale well due to the communications in particle depo-
sition. Fig 4 gives the speedup performance of the same
code on the SGI Origin2000.

The main program speedup increases to 32 processors
and starts to decrease on 64 processors. The speedups of in-
dividual subroutines map2, and the depositing and scatter-
ing subroutines are superlinear which might be due to local
cache effects. The FFT subroutine gives very poor scalabil-
ity saturating even on 16 processors due to its global nature.
This makes the main program less scalable on the SGI Ori-
gin2000 than on the SGI/Cray T3E-900. To implement the
object-oriented design, we used a number of pointers and
dynamics allocated arrays. This will affect the code perfor-
mance due to loss of compiler optimization comparing with
non-object-oriented code. In Fig 5, we give a comparison
of the time costs of object based codes using both F90/MPI
and HPF with conventional procedure based codes.
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For F90 with MPI code, on small number of processors,
the overhead from object-oriented implementation is about
10 to 20%. This overhead decreases with increasing num-
ber of processors. In the case of HPF, the object based code
seems to over perform the procedure based code on small
number of processors and lose out on a large number of
processors.

7 CONCLUSIONS

In this paper we have discussed implementations of object-
oriented design using Fortran in parallel beam dynam-
ics simulations. As previously stated, implementing the
object-oriented design with F90 and MPI encapsulates the
details of communication in low level auxiliary classes.
This also provides the benefits of better maintainability,
reusability and extensibility of software. For example, a
new beam line element can be easily incorporated into the
BeamLineElem class without affecting the other classes.
Using the concept of object, which is implemented using
HPF modules, gives the code some advantages of object-
oriented programs and also the advantage of ease in parallel
programming. This implementation was based on the cur-
rent status of the PGHPF compiler technology. With further
development of compilers, it is possible that the program-
ming barriers we encountered will disappear. In that event,
this model will be easily extended to adopt new features in

the future to include more completely object-oriented fea-
tures.

In our first experience of applying these codes on the
SGI/Cray T3E-900 and SGI Origin2000, we obtained a rea-
sonable performance up to 32 processors on both machines.
The code written using F90 with MPI seems to be more
scalable on the SGI/Cray T3E-900 than on the SGI Ori-
gin2000. The overhead of implementing object-oriented
design using pointers, types and modules is small. To sum-
marize, it appears to us that implementing object-oriented
design with Fortran can achieve both good software quality
and parallel programming in scientific applications.
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