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Abstract

A structure of four coupled 7-cell resonators has been
proposed [1] to increase the effective gradient of TESLA
[2]. Each so-called "superstructure” is fed through asingle
input coupler. The sensitivity of field flatness against
geometrical deviations and the time dependence of the
fields during fill- and refill-time are studied by means of
MAFIA [3] calculations using an optimized grid. The
consistency of MAFIA results for perturbed versus unper-
turbed fields is confirmed utilizing an analytical relation.
Non-stationary fields are expanded in a set of eigenmodes
calculated with MAFIA. The method is described in some
detail and results are presented in comparison with the
respective results on the established 9-cell-structure.

1 INTRODUCTION

Overall length is a dominant cost contribution to the total
investment for a linear collider. Therefore it is an im-
portant task to fill a given length as dense as possible
with active, i.e. accelerating, elements. A modified so-
called "superstructure” of four coupled 7-cell cavities has
been proposed [1] to improve the fill factor of the TESLA
[2] accelerator compared to the present design of decoupled
9-cell cavities. Furthermore the superstructure will need
only a single input coupler driving the complete string.
This paper describes two main aspects of the operation of
such a superstructure we are investigating: the question of
field flatness sensitivity against shape deviations and the
non-stationary behaviour during filling time and beam
passage. The following section describes a specialized grid
that allows to approximate the cavity shape without
staircases of the material distribution. Section 3 contains
a method to confirm consistency of MAFIA results on
modified boundary shapes. In section 4 the fundamental
mode flatness sensitivity against a certain perturbation of
asingle cell is compared with a similar perturbation of a
standard 9-cell resonator. Section 5 gives some detail
about the calculation of transients based on eigenmode
expansion and shows the results, again in comparison
with a 9-cell resonator.

2 GRID GENERATION

A proper discretization of the cavity surface is essential
for reliable numerical results, especially if small
deviations are to be studied. Therefore the grid has been
generated in a special manner: At each point of
intersection of a certain r-mesh line with the cavity shape

a z-mesh line was placed. Then the boundary is appro-
ximated by those mesh cell”s diagonal's, which are secants
of the curvature. Thus no staircases appear in the material
distribution. On the other hand this leads to widely spread
mesh cell dimensions, since both very high and very low
slopes - corresponding to very narrow and very large z-
mesh steps - have to be covered. Therefore the r-mesh
positions have to be chosen carefully in a manner, that all
given points of the structure were hit exactly, and that the
local mesh step ratios are kept in reasonable limits.
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Figure 1: Part of the cavity shape and grid lines. High
slopes of the boundary curve lead to dense z-mesh lines,
regions of low slopes need dense r-mesh lines.

3 MAFIA CALCULATIONS OF CAVITY
SHAPE PERTURBATIONS

In order to confirm the consistency of MAFIA-calculated
fields and eigenfrequencies of perturbed and unperturbed
cavities we calculated either case directly. Further we used
expression (1) which is derived from Maxwell”s equations
without any approximation:

i#(HxE;)dﬁ

W—Wy= - - - .
JH(sEEO+pHHO)dV
).

@

Herein (E,, Hy, wy,) stands for the field distribution and
eigenfrequency of the unperturbed cavity, (E,H, w)

similar of the perturbed one. V is the volume of the
perturbed cavity; AA the closed surface of the insertion. If
thisinsertion is located at the boundary of the unperturbed
volume (like in the case shown in Fig. 2), only the inner
part of AA contributes to the integral.
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Figure 1: Upper half cross section of model cavity
without (upper) and with perturbation. Arrows indicate the
fundamental mode E-field, found at 4.3866 GHz (unpert.)
and 4.9120 GHz (pert.)
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Figure 3 a, b: Frequency deviations Af it between pertur-
bed and unperturbed cavities calculated from the right hand
side fraction of Equ. (1) (upper); ratio of Afjnt to the
difference of MAFIA-eigenfrequencies for the first 10
modes vs. unperturbed frequency (lower graph).

The consistency of the MAFIA-runs with and without
perturbation is confirmed by evaluating Eqn. (1). This has
been done in the case of 2D-calculated TMO-Modes. Then
the surface integration (numerator) is reduced to a line
integral that can be integrated using the MAFIA postpro-
zessor. Some additional effort has to be spent to perform
the cross product of the fields which has to be done in the
2D-case in elementary steps. The volume integral in the
denominator is calculated abusing the MAFIA energy
integration. To do this one has to prepare two extrafields

with single components equal to
VeEE, and /puHH, .

Further attention has to be paid to the sign of the square
root”s arguments. The result of the right hand side fraction
of Equ. (1) is displayed in Fig. 3 normalized to the fre-
quency spread calculated directly for the first 10 modes of
the geometry shown in Fig. 2. In general one can observe
an agreement within a few percent, mostly below 1%.
There is some tendency to smaller errorsin case of higher
frequency shifts. An unavoidable contribution to the diffe-
rences comes from the line integral that has to be calcula-
ted for technical reasons one mesh line below the surface
of the insertion. A second run with doubled distance was
made in order to estimate the influence of this effect.
Most of the errors were approximately doubled, too, so
we asume the reason of the major part of the difference to
be caused by the technical difficulty of the testing method.

4 SENSITIVITY OF NORMAL AND
SUPERSTRUCTURE

Four cavities are coupled in the superstructure. Therefore
it is important to know about the influence of single
boundary perturbations on the overall field flatness. In the
first cell of the third cavity we applied an insertion at the
cell’s equator in a manner shown in Fig. 4. The radius of
the cell shrinked from 104.935 mm to 104.53 mm. A
similar insertion was applied to a standard 9-cell resona-
tor. In either case this corresponds to afull ring of additio-
nal material since the calculations were done in 2D. We
observe an unflatness of similar amount. The field distur-
bance covers awider range in the long structure which one
may judge asit’s disadvantage.

Figure 4: Part of grid and cell boundary with material
insertion at the equator.
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Figure 5: MAFIA-profile of accelerating field in 9-cell re-
sonator with 0.405 mm reduced radius in first cell (cf.
Fig. 4).
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Figure 6: MAFIA-profile of accelerating field in 4x7-cell
resonator with 0.405 mm reduced radius in first cell of
third resonator (= 2.1 m, cf. Fig. 4).

5 FILLING AND BEAM LOADING

Recent developments of input couplers and their power
transmission capabilities made it possible to feed a
complete superstructure with a single coupler. Then one
has to look whether the filling process will be completed
in the given time. Further the question arises whether the
power taken away by the beam is re-established fast
enough in order not to shrink the beam energy gain during
the bunch train passage. To calculate this one could think
of direct time domain simulation. In fact thisis practical-
ly impossible for a mesh volume of approximately
450.000 points and atime intervall that covers about 106
oscillations. Therefore we used the approach of eigenmode
decomposition (e.g. [4], [5]). A similar calculation with
dlightly different assumptions and based on another code
has been done from Ferrario and Sekutowicz ([6], [7]).
Our results are in good agreement with theirs.
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Figure 7: Model used for time domain cal culations based
on eigenmode expansions.

The model used for the calculation is shown in Fig. 7.
The eigenmodes of the resonators are excited by the beam
current I, and a short transmitter driven current path Ic. An
ideal rf-source with voltage Ug together with it’s inner
resistance R are used to decribe the transmitter. For
reasons of simplicity I¢ is placed on axis in the beam pipe
near the beginning of the first cell. Thisis justified by a
proportionality factor, common to all modes, of the axis
fields to the fields at the real input coupler position. Since
external Qs are about 104 lower than unloaded ones,
resistive losses of the cavities are neglected. So the trans-
mitter resistance is the only damping within the system,
that furthermore causes a mode-to-mode coupling. Only
the 28 modes of the fundamental passband were taken into
account. Thisisjustified by the large frequency gap to the
next higher passhands, which appear above 2 GHz.

Starting from Maxwell”s equations we find:

~GAE+ed?E=-0,]. )
The electrical field is expanded in a set of eigenmodes:
[ — E\)(T')
Each eigenmode solves:
AE,+k2E, =0 with ki=wleu @
and therefore holds:
E (T -
cZ| GO (wirman|=-0i.  ®
Applying the orthogonality of the eigenmodes:
[U e B, dV =25, W, ©
v Vres
yields:
(wf+07) a,(t) =—0, c,(t) ™
with the abbreviation:
[ I(rYE(M
c,(t): = JJL@ W, dav . (8)

Equ. (8) gives the expansion coefficients of the currentsin
the eigenmode system. The total current is splitted in
beam (index b) and transmitter driven current (index c):
J(r ) =Ju(T ) + (T, 1) ©)
or respectively:

Cv(t) = Cv,b(t) + Cv,c(t) . (10)

If the beam travels on-axis with constant velocity v the
following holds:
euult) = J lo(t—§) & By(T)
v,b - —/2—
z—axis W"

Similarily we get for the transmitter current which is
assumed to be constant along it’s path:

dz . (11)

E,(T) dr

Cyo(t) = 1(8) cur—path

J2W,
Egn. (12) defines the important abbreviation K, that
allowsto write Kirchhoff’s law along the external circuit:

U(t) + RI() = Ut) (13)

as: ~L3anK,+1o="2dY.

From (7), (10), (12) and the time derivative of (14) asys-
tem of coupled differential equationsin the a,(t) follows:

= 1)K, . (12)

(14)

(wl+07) a,(t) + 5 2K, K dea ) =

K

(15
=-9, [cv,b(t) R Uo(t)] v



Introducing a second set of variables:

b, =3 02, = d.a,=iab, = dfa=iwdb,
(16)

(the b, are the amplitudes of the B-fields) and using an
additional abbreviation for the inhomogenity in (15):
K,

R Yo®

Sv = I@ at Cv,b(t) + (17)

we arrive at a system of differential equations written in
matrix-vector-notation:

0 iw, - 0 0
a . K2 KKy a
b, | | 7@ “rR 0 ~"Ra, ||b,
at R - : : : : : =
a, 0 0 - 0 I Wy, a,
2
b, 0 _KnRK(Snwl' i % b,
0
S
= (18)
0
Sn
or 0,V-Mv=3%8. (29
The corresponding homogeneous system:
0,Vv-Mv=0 (20)
has the well known general solution:
=5 (e,eiu) 1)
i<

with the number of modes n used to expand the fields, the
eigenvalues A; and the eigenvectors &; of M and arbitrary
constants u;. The calculation of A;and &,is done
numerically which is (beside the field calculation) the
only non-analytical step in the procedure. To solve the
inhomogeneous sytem (19) the u; are assumed to be time
dependent. They can be found with some additional steps
and by means of Cramer’srule as:

't
da(éb"”‘T_ (T dr, L 8,

u;(t) = det (8, ..., &)

In (22) the additional assumption was made that all
excitations are vanishing before t=0. We'll refer to the
time dependent vector that replaces &; in the numerator
determinant as

(22)

Lt: 0 e Mt (1) dt = \ij(t) = Wb,j(t) + chj(t) )

Herein the beam excitation is represented by \Tvb,j(t) , the
transmitter current by \Tvcyj(t) . For al times t>0 we
assume a time dependence of the transmitter voltage like:

Uy(t) =V, et ot (24)
which alows for an explicit integration:

_70 Wy _ aliwg-Aj)t
W, ()= 5 O_)\j[le 0-2)1] (25)
withK=| 0O (26)

K,/ w,

The beam is composed as chain of single charges q, tra-
versing z=0 at different times t =t, (an additional charge
counting index omitted). Thus we have to replacein (11):

los(t:2) =q O(t—t, — (27)
After some further steps thisleads to:
— ) it
Wb] qu}\J(tbq“er&/V)e l b) 8
(28)
N L resy,
&)VJ— f e MTE,, (v 1) dr

In (28) only the sum and the charge depend on beam
parameters; all other quantities are determined from the
cavity modes. During a charge’s transversal the result of
(28) isin error for the contribution of this single charge,
which is counted at a whole after the charge left the
resonator. The solution of the mode amplitudes searched
for isfound from Eqgns. (21), (22), (23), (25) and (28):

a,(t

b (0 ]2 [& € it det (@ o (Wi (0) + We () » &3]

a (1) det (&, ..., &)

ba(t)

(29)

The case before a beam transverses the cavity reads as:

al(t) e)\] —glopt

0 | v, Z[ej O det (e R )

a.(t) det(él, ey Bon)

b ()

(30)

In the TESLA scheme 1130 bunches of 5.7267 nC
charge are foreseen following each other in a distance of
919 rf periods. The injection of the first bunch happens at
rf period 760336 (584.6 ps) at half the unloaded steady
state voltage. From this an external Q = 3446120 fol-
lows. This data allows to calculate the transmitter resis-
tance, which of courseisonly valid for a certain coupling,
defined by length and position of the current path. For the
calculations in Fig. 8 a (slightly to low) Q = 3433810
was found from the M -eigenvalue A ; according:

_ o _[Im(A))]
=20, 2Rer))

This results in a voltage decrease (cf. Tab. 1) during the

(30)



bunch train and is cited here to illustrate the dependencies.
The voltage was calibrated to be 25 MV/m inside the
resonators at first injection, equal to 80.6756 MV in
total. This total gradient was investigated for each bunch
with an improved Q. The remaining deviations appear as
jitter of below £1000 V (courtesy M. Dohlus).

Ez/(MV/m)  cel 1 cell 7 cell 28
bunch 1 47.352 48.009 47.426
bunch 1130  47.089 47.831 47.044
decrease  -0.55%  -0.37%  -0.80%

Table 1: Decrease of accelerating voltage caused by slight
mismatch of transmitter resistance, i.e. coupling.

Fig. 8 shows as the result of our calculations a sequence
of field profiles illustrating the process of build-up,
profile stabilization and the influence of the beam. Fig. 9
shows a similar picture under same conditions for a 9-cell
structure after 104 rf periods. As expected, it’s field ampli-
tudes are higher at this time and the flatness is better.
Nevertheless the field in the superstructure is obviously
established fast enough and the profile with beam remains
stable.

6 CONCLUSION AND OUTLOOK

We studied two main aspects of a 4x7-cell "super-
structure” in comparison with the standard TESLA-9-cell
cavity. Neither the filling and refilling of the superstruc-
ture nor the field flathess sensitivity contradict a sucess-
full operation. Further studies will target the higher order
mode behaviour.
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Figure 8: Sequence of field profiles (Ez/(V/m) vs. z/m) at
increasing time (101 to 104 rf periods; first, last bunch)
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Figure 9: Field profile of 9-cell cavity after 104 rf periods;
the profile is amost stabilized.



