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1 Introduction 

The goal of these lecture notes is to introduce the developing research area of 
gravitational-wave phenomenology. In more concrete terms, they are meant to 
provide an overview of gravitational-wave sources and an introduction to the in- 
terpretation of real gravitational wave detector data. They are, of course, limited 
in both regards. Either topic could be the subject of one or more books, and 
certainly more than the few lectures possible in a summer school. Nevertheless, it 
is possible to talk about the problems of data analysis and give something of their 
flavor, and do the same for gravitational wave sources that might be observed in 
the upcoming generation of sensitive detectors. These notes are an attempt to do 
just that. 

Despite an 83-year history, our best theory explaining the workings of gravity- 
Einstein’s theory of general relativity-is relatively untested compared to other 
physical theories. This owes principally to the fundamental weakness of the grav- 
itational force: the precision measurements required to test the theory were not 
possible when Einstein first described it, or for many years thereafter. 

The direct detection of gravitational-waves is a central component of our first 
investigations into the dynamics of the weakest of the known fundamental forces: 
gravity. It is only in the last 35 years that general relativity has been put to 
significant test. Today, the first effects of static relativistic gravity beyond those 
described by Newton have been well-studied using precision measurements of the 
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energy in units of length. Power is then a dimensionless number. For CGS 
units, the conversion factors between mass, energy, and length, and the 
physical constant with units of power, are 

G/c2 = 7.42 x 10-2gcm/gm, (6) 
G/c” = 8.26 x 10-50cm/erg, (7) 
c5/G = 3.63 x 105’erg/s. (8) 

2 Characterizing Gravitational Radiation 

For our purpose here-recognizing gravitational waves incident on a detector- 
two different characterizations of gravitational radiation are useful. The first is 
the radiation waveform and the second is the signal “power spectrum.” The 
waveform describes the radiation field’s time dependence while the power spec- 
trum describes its Fourier components. In Sets. 2.1 and 2.3 we describe these 
different characterizations of gravitational radiation. Several important physical 
insights regarding gravitational radiation sources can be gained by considering the 
instantaneous power radiated by a source: we discuss these insights in Sec. 2.2. 

2.1 Radiation Waveform 

In this subsection we review briefly the expression of the radiation incident on a 
detector. Much of this section is by way of review; for more details, see either 
the lectures by Bob Wagoner in this collection, one of the many textbooks on 
relativity,4-s or an excellent review article on the subject.g 

Gravitation manifests itself as spacetime curvature and gravitational waves as 
ripples in the curvature that appear to us, moving through time, to be propagating. 
Detectors are generally not directly sensitive to curvature, but to the mechanical 
displacement of their components; so, we focus our attention on the spacetime 
metric, from which physical distances between points in spacetime are determined. 
(The curvature is a function of the metric’s second derivatives.) 

We assume that gravity is weak in and around our detector; correspondingly, 
we treat the spacetime metric as if it were the metric of Minkowskii spacetime, 
plus a small perturbation: 

gw = qcLv + hpu, (9) 

where q,,” is the Minkowskii metric and h,, the metric perturbation. The corre- 
sponding line element, describing the proper distance between nearby spacetime 
events whose coordinate separation is the infinitesimal dxp, is 

ds2 = g,,dx~dx” = qp,dxpdx” + h,,vdxpdxY. (10) 

Detecting gravitational waves amounts to building instruments that are sensitive 
to the effects of the small perturbation h,,; determining the signature of the 
gravitational waves in the detector thus requires determining h,, and its influence 
on the detector. 

The metric gU,, tells us how the proper distance between points in spacetime 
is associated with our choice of coordinate system. Since the gravitational fields 
near our detector are weak and the spacetime nearly Minkowskii, we can intro- 
duce coordinates that are, in the neighborhood of the detector, nearly the usual 
Minkowskii-Cartesian coordinates, with the deviations of the order of the pertur- 
bation. 

Now, small changes in the coordinate system do not change the proper dis- 
tance between events, only our labeling of them. If we make small changes in 
our coordinate system, of the order of the perturbation, then we will make cor- 
responding changes in the perturbation h,,. We can use this freedom to simplify 
the expression of h,,. Coordinate changes do not change the physics or any ob- 
servable constructed from h,,, of course. For this reason, and in analogy with 
electromagnetism, coordinate choices like these are referred to as gauge choices. 

With the separation of the metric into the Minkowskii metric npy plus a small 
perturbation, the field equations of general relativity become (at first order in the 
perturbation) a set of second order, linear differential equations for the ten com- 
ponents of the symmetric h,,. Consequently, fixing the coordinates allows us to 
impose eight conditions on the ten components of the symmetric h,,,,, leaving just 
two dynamical degrees of freedom. These are identified as the two polarizations 
of the gravitational radiation field. 

An important gauge choice, always possible for radiative perturbations about 
Minkowskii space, is the Transverse-Truceless, or TT, gauge. The Transverse- 
Traceless gauge is always associated with a particular observer of the radiation. 
Let the four-velocity of this observer have components Up. Without loss of gener- 
ality let t mark the proper-time of this observer (so that Up is just the coordinate 
vector in the t direction) and x, y, and z be the usual Cartesian coordinates (to 
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The second term in equation 23 shows the effect of the gravitational wave on the 
separation between the two elements of the detector: as h,, oscillates, so does 
the distance. If the equilibrium separation between the components is L in the 
direction 9, to O(h) the net change 6L in the separation is equal to 

The physical distance between detector components does change, in an amount 
proportional to the undisturbed separation and the wave strength as projected on 
the separation. Gravitational wave detectors are designed to be sensitive to this 
displacement of their components. 

As mentioned above, the TT-gauge conditions amount to eight constraints on 
the ten otherwise independent components of the (symmetric) h,,. There are thus 
two components of h,, that are independent of the choice of coordinate system; 
correspondingly, in general relativity there are two dynamical degrees of freedom 
of the gravitational field. To see what these amount to, without loss of generality 
consider a plane wave propagating in the t direction. Then we can write 

h;~dx’dx” = h+(xi,t) (d2 - dy2) + 2h,(zj,t)da:dy, (25) 

where h+ and h, are the two independent dynamical degrees of freedom, or po- 
larizations, of the gravitational radiation field. 

Solutions to the wave equation for hi, (eq. 11) can be analyzed in a slow mo- 
tion expansion in exactly the same way as solutions to the Maxwell equations.g-” 
The radiative hi? in this expansion divide neatly into two classes of multipolar 
fields, which are (in analogy with electromagnetism) termed electric and mag- 
netic multipoles. The electric multipolar radiative fields are generated by time- 
varying multipole moments of the source matter density in the same way that the 
analogous electric moments of the Maxwell field are generated by the time-varying 
moments of the electric charge density. Similarly, the magnetic radiative moments 
are generated by the time-varying multipole moments of the matter momentum 
density, which is the analog of the electric current density. 

In electromagnetism, the first radiative moment of a charge distribution is a 
time-varying charge dipole moment. When electrical charge is replaced by gravita- 
tional charge-i.e., mass-we see that the corresponding dipole is just the position 
of the system’s center of mass, which (owing to momentum conservation) is un- 
accelerated. Consequently, in general relativity there is no gravitational dipole 

radiation. The first gravitationally radiative moment of a matter distribution 
arises from its “accelerating” quadrupole moment. Dotting the i’s and crossing 
the t’s, we find that, at leading order, the radiation field at a distant detector is 
related to the matter distribution of the source according to 

hy(t,Z) = fgQy(t - r-) (26) 

ST = P,k(~c’)Qk&j(~) - +ij(~)Qd%r@) (27) 

&ii(t) = / d3x At> 4 (w, - &) , (28) 
P+(z) = 6,, - “jxk/x*. (29) 

The expression for hy given above is the famous “quadrupole formula” of general 
relativity, which relates the acceleration of a source’s quadrupole moment to the 
gravitational radiation emitted. It is, for weak gravitational fields, the exact 
analog of the more famous “dipole formula” of electromagnetism. 

2.2 Radiated Power or Energy 

Gravitational radiation carries energy away from the radiating system. Important 
insights into gravitational radiation can be gained by considering the energetics 
of radiation sources, which we do in this section. 

The instantaneous power carried by the radiation is, in the usual way, pro- 
portional to the square of the time derivative of the field integrated over a sphere 
surrounding the source: 

L cx 57rA2. 
G  (30) 

The “exact”* expression for the power carried away in electric quadrupole radia- 
tion is 

(31) 

where the <> indicates an average several periods of the radiation. Note that the 
power depends on QtJ and not Qz’. 

If we focus on the radiation emitted by a weak-field, dynamical source, we 
can use the multipolar expansions described above to replace the fields by the 

*In the context of our approximation of everywhere weak gravitational fields. 
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The signal spectrum is evaluated for positive frequencies and is twice the square 
modulus of its Fourier transform averaged over the observation, or 

(40) 

for non-negative f. Since h(t) is real, we can use The Parseval Theorem to obtain 

(41) 

where (.) denotes a time average. The signal spectral density is thus a measure of 
the contribution to the mean-square signal amplitude owing to its Fourier compo- 
nents in a unit bandwidth. (For non-burst-i.e., stochastic or periodic-signals, 
we often take the limit as T + co.) 

As we have described it, the signal spectrum is derived from the signal wave- 
form h(t) by “throwing away” the phase information. There is clearly much less 
information in P(f) than in the corresponding h(t): why, then, is P(f) an inter- 
esting characterization of a signal? 

One reason is that real detectors are only sensitive to radiation in a limited 
bandwidth--i. e., at certain frequencies. The integral of the signal power spectrum 
over the detector bandwidth is the contribution to the mean-square amplitude of 
h from power in the detector bandwidth. 

A second reason is that it is not always possible to determine the waveform 
of a gravitational wave signal. For example, the waveform of a stochastic signal, 
arising from a primordial background or from the confusion limit of a large number 
of weak sources, is intrinsically unknowable. Nevertheless, the signal spectrum is 
straightforward to calculate. In this case, the spectrum embodies everything we 
can know about the gravitational wave signal. 

Another example illustrates a different circumstance. Calculations of gravita- 
tional radiation waveforms h+(t) and h,(t) f rom the kind of stellar core collapse 
that triggers type II supernovae are, even in their grossest details, extremely sensi- 
tive to the details of the stellar model and the physics included in the simulations. 
In the face of this variety of structure, however, the spectra all show a remark- 
able similarity. i3 It may be that this variety reflects our ignorance of the relevant 
physics and that with better understanding the waveforms would show much less 
variation and much greater predictability; it may also be that the details of the 
collapse waveform are in fact very sensitive to the initial conditions. Whether in 

practice or in principle, the waveform is today unknown; nevertheless, the spec- 
trum does appear to characterize the signal quite well. 

We close with a final reason that the spectrum is a useful characterization 
of a gravitational wave signal. The sensitivity of a gravitational wave detector 
is limited by the detector noise, which is an intrinsically stochastic process. In 
the best detectors, the noise is fully characterized by its spectrum (cf. 3.5). We 
expect intuitively that a signal is detectable only when its spectrum has greater 
magnitude than the detector noise spectrum over a sufficient range of frequencies. 
This qualitative notion finds quantitative expression in the signal-to-noise ratio, 
which we discuss in Sec. 3.5 below. 

2.4 Conclusion 

For the purposes of detection, gravitational waves are usefully characterized by 
their waveform or spectrum. There are important sources for which the explicit 
waveform is not known, either because it is intrinsically unknowable, our grasp of 
the underlying physics is not complete, or the calculations involved in determining 
it are beyond our capabilities. In these cases, it may still be possible to estimate 
the signal spectrum, which then serves to characterize it. 

3 Characterizing The Detector 

3.1 Introduction 

Gravitational-wave detectors transform incident gravitational waves into, e.g., 
electrical signals that we can more easily manipulate. In Sec. 3.2, we describe 
briefly and schematically two of the detector technologies currently being pursued 
to detect gravitational waves. For all detectors we might realistically imagine 
building, the detector response is linear in the incident radiation: i.e., the time 
history of the detector output is linearly related to the time history of the incident 
radiation. 

There are two aspects of this response that we must consider: differential sensi- 
tivity to the radiation incident from different directions, and differential sensitivity 
to incident radiation of different frequencies. The first of these is described by the 
detector’s antenna pattern, which we discuss in Sec. 3.3, and the second of these 
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ACIGA project, the German/UK GE0 600 projectz5 and the Japanese TAMA 300 
project. The ACIGA Project’s ultimate goal is a multi-kilometer detector, to be 
located several hours outside of Perth; presently, they are beginning the construc- 
tion of an approximately 80 m  prototype at the same site. GE0 600, located 
in Hanover, Germany, is a folded Michelson interferometer with an optical arm 
length of 1.2 Km. The Japanese TAMA 300 is a 300 m Fabrey-Perot interferom- 
eter located just outside of Tokyo; it is hoped that the success of this project will 
lead to the construction of the proposed Laser Gravitational Radiation Telescope 
(LGRT), which would be located near the Super-K neutrino detector. 

There are several ways to make an interferometer more sensitive at frequencies 
less than the reciprocal of the detector’s light storage time. One is to increase 
its arm length (recall equation 24!). The Laser Interferometer Space Antenna- 
LISA-is an ambitious project to place in solar orbit a constellation of satellites 
that will act as an interferometric gravitational wave detector.26,27 The arm length 
of this interferometer would be 5 x lo6 Km. The LISA project has been approved 
by the European Space Agency as part of its Horizon 2000-t Program; additionally, 
the US National Aeronautics and Space Administration is actively considering 
joining ESA as a partner to accelerate the development and launch of this exciting 
project. 

3.3 Antenna Pattern 

Gravitational wave detectors respond linearly to the applied field. The interfero- 
metric and bar gravitational wave detectors now under construction or in opera- 
tion have only a single “gravitational wave” output channel.3 When a plane wave 
is incident on such a detector, the time history of the output channel is linearly 
related to a superposition h(t) of the + and x polarizations of the incident plane 
wave: 

h = F+h+ + F,h,. (42) 
The factors F+ and F, describe the detector’s “antenna pattern,” or differential 
sensitivity to radiation of different polarizations incident from different directions. 
(In fact, the antenna pattern may also be a function of radiation wavelength; how- 

~Some proposed acoustic detectors are instrumented on several independent modes. In this case, 
each mode may be considered a separate detector and represented as a single gravitational wave 
channel. 

ever, when the wavelength is much larger than the detector this dependence is in- 
significant.) They depend on relative orientation of the plane-wave’s propagation 
direction and the definition of the + and x polarizations. 

If we fix the propagation direction and rotate the polarization of the incident 
radiation, then the detector response h(t) will change. Define the polarization 
averaged root-mean-square (RMS) antenna pattern F, 

F’(i) = F;(i) + F,:(i), (43) 
where i is the wave-vector of the incident plane wave and the overline denotes 
an average over a rotation of the incident radiation’s polarization plane. The re- 
sult depends only on the wave-vector (or, alternatively, the wave’s propagation 
direction and wavelength) and is proportional to the detector’s root-mean-square 
response to plane-wave radiation incident from a fixed direction at fixed wave- 
length. For either the acoustic or interferometric detectors now operating or under 
construction, F(k) is independent of the magnitude of Ic as long as the radiation 
wavelength is much larger than the detector. 

A convenient pictorial representation of the detector’s response results if we 
plot the surface defined by fiF(~?) for fixed Iii, where fi is the unit vector in the 
direction of the source relative to the detector (i.e., fi = -i/k). In such a figure, 
the response of the detector to a plane wave with wave-vector i (appropriately 
averaged over polarization) is proportional to the distance of the surface from 
the origin in the direction of the source (fi). In the remainder of this subsection 
we describe the antenna pattern of interferometric and acoustic bar detectors to 
incident gravitational plane waves. 

3.3.1 Bar Detectors 

In a classic bar detector, incident gravitational waves drive the fundamental 
longitudinal mode of a right cylindrical bar. The driving force-and thus the 
radiation-is determined by observing the motion of this mode. For definiteness, 
let the longitudinal axis of the bar be along the i-direction, and consider a plane 
gravitational wave propagating in the &direction: 

h~(t)dsidx3 = h+(t) (dy’ - dz’) + 2h, (t)dy dz 

The + polarization mode changes the z-distance between the atoms in the bar. 
This change is resisted by inter-atomic forces in the bar; thus, the bar’s longitu- 
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be incident on the detector from direction i. There will be no detector output 
proportional to h,, since that component of the radiation does not lead to a 
differential change in the arm lengths; on the other hand, the polarization com- 
ponent proportional to h+ does lead to a differential change in the arm lengths 
and, correspondingly, to detector output. 

Similarly, consider radiation incident on the detector along the interferometer’s 
z arm: 

hijd&ZJ = h+ (dy* - d2) + 2h,dydz. (51) 
Again, the x polarization mode does not lead to a differential change in the 
interferometer arm lengths (at first order in h); so, the detector is not sensitive 
to radiation with this polarization. On the other hand, radiation in the + 
polarization mode, as we have defined it, leads to changes in the length of the y 
arm while leaving the 2 arm length unchanged; consequently, there is a daflerential 
change in the interferometer arm length and the detector is sensitive to radiation 
of this polarization incident from this direction. 

To determine in general the coefficients F+ and F, that describe the response 
of an interferometric detector to incident plane waves, first describe the polariza- 
tion modes of radiation incident on the detector relative to the detector coordinate 
system. In the usual (19, 4) spherical coordinates associated with the interferom- 
eter coordinate system, the incident direction of a plane-wave propagating with 
wave-vector ,C is 

In the plane orthogonal to the radiation propagation direction &, let the 2’ direc- 
tion be parallel to the sy-plane and the $’ direction be orthogonal to ?’ so that 
(Z’,$‘, -i) forms a right-handed coordinate system. [In the degenerate case- 
radiation propagating parallel to the 2 direction-we take f’ parallel to 2 and 6’ 
such that (3, $‘, -2) is right-handed.] In terms of this coordinate system, define 
the + and x polarizations of an incident gravitational wave by 

hijdzidx3 = h+ (dx’* - dy”) + 2h,dz’dy’; 

then, the antenna pattern factors F+ and F, are given by 

co2 8) cos 243 cos 2Q - cos 8 sin 24 sin 2$, 

(54) 

(55) 

Fig. 2. The polarization-averaged RMS sensitivity of an interferometric gravita- 
tional wave detector to radiation incident from any direction. The detector is at 
the origin of the figure and has its arms aligned with the figure’s z and y axes. 
The magnitude of the distance from the origin to the surface in a direction A is 
proportional to the relative response of the detector to radiation incident on the 
detector from that direction, averaged over all polarizations. 

F, = ;(I+ co2 8) cos 24 sin 2$ + cos B sin 24 cos 2Q. (56) 

Figure 2 shows the polarization-averaged RMS sensitivity of a right-angle inter- 
ferometric detector to plane waves incident from a given direction. The detector 
is at the origin of the figure, with its arms along the figure’s f and 9 axes. The 
detector’s sensitivity to radiation incident on the detector from direction A is pro- 
portional to the distance of the surface from the figure’s origin in the direction 
ii. 
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feet world noise would arise exclusively from fundamental physical processes: e.g., 
fluctuations owing to the finite temperature of the detector, counting statistics 
of individual photons on a photo-detector, etc. In the less than perfect world in 
which we live, there will be other contributions to the detector noise, beyond these 
fundamental processes, that arise from the imperfect construction of the detector 
(e.g., bad electrical contacts), imperfections in the materials used to construct the 
detectors (e.g., mechanical creep and strain release), and from the detector’s in- 
teraction with the (non-gravitational wave) environment (e.g., seismic vibrations, 
electromagnetic interactions, etc.). 

Detection of gravitational waves requires that we be able to distinguish, in the 
detector output, between signal and noise. This requires that we have character- 
ized the noise (and not only the signal). Since noise is intrinsically random in 
character, that characterization is in terms of its statistical properties. Some of 
these statistical properties we can predict, model, or anticipate a ptiori, based on 
the detector design; nevertheless, it is important to realize that an experimental 
apparatus is a real thing made in the real world and will never behave ideally. 
While a large part of the experimental craft involves building instruments that 
operate as close as possible to their theoretical limits or prior expectations, the 
final characterization of a detector will always be determined or verified empir- 
ically. In this section we describe something of how noise in gravitational wave 
detectors is characterized. 

3.5.1 Correlations 

Just as a probability distribution is fully characterized by its moments, so the 
random output of a gravitational wave detector can be fully characterized by its 
correlations. The N-point correlation function describes the mean value of the 
product of the detector output sampled at N different times. Mean, in this case, 
refers to an ensemble average, where the ensemble is an infinite number of identi- 
cally constructed detectors. Denoting by n(t) the noisy output of a gravitational 
wave detector in the absence of any signal, the N-point correlation function of the 
noise distribution is given by 

CN(TO, , TN-I) = 470). .n(~-d, (64) 

where the over-bar signifies an ensemble average, which is also referred to as an 
average across the process. 

As a practical matter ensemble averages are impossible to realize experimen- 
tally: one rarely has the opportunity of working with even two similar detectors, 
let alone an infinite number of identical ones. Thus, while a handy theoretical 
construct, the general set of correlation functions is not of great practical use in 
characterizing the behavior of a real detector. 

3.5.2 Stationarity 

If, however, the behavior of the detector noise does not depend significantly on 
time--i. e., the noise is stationary-then the utility of the correlation function as 
a practical tool for characterizing detector noise increases dramatically. When 
the noise character is, figuratively, the same today as it was yesterday and as 
it will be tomorrow, then the detector yesterday (or an hour, or a minute, or a 
second ago) can be regarded as an identical copy of the detector we are looking 
at now, and both are identical copies of the detector tomorrow. Consequently, in 
the spirit of the ergodic theorem, we can replace the average across the process- 
the ensemble average-with an average along the process-a time average. The 
N-point correlation function is then a function of the difference in time between 
the N samples: 

Of course, perfect stationarity is an impossible requirement. As a practical 
matter, what we require is that the noise process be stationary over a suitably 
long period. Let’s try to make that concept more quantitative. To simplify the 
discussion, assume (without loss of generality) that the noise process has zero 
mean. Consider first the two-time correlation function of a stationary process: 

&(T) = l im - T-too k l’o, n(t)n(t - 7) dt. 
II 

For sufficiently large r we expect intuitively that Cz(r) should vanish: the output 
now should be effectively uncorrelated with the output in either the distant past 
or the distant future. This will also be the case for the higher-order moments 
as well: for sufficiently large rk (any k), the correlation function C’,v should van- 
ish. Thus, we don’t need to require perfect stationarity; rather, we require only 
that the statistical character be approximately stationary, varying significantly 
only over times long compared to the longest correlation time. In that case, we 
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3.5.4 Likelihood Function 

In the last section we evaluated 

t 

probability of observing 
P(wI0) f output sequence v assuming (74) 

no signal is present 

for Gaussian-stationary detector noise. Since the detector is linear, the probability 

probability of observing 
P(wlh) = output sequence 21 assuming (75) 

signal h is present 

is just 3.5.6 Noise Power Spectral Density 
P(wlh) = P(w - WhlO), (76) 

Consider for a moment a simple harmonic oscillator-e.g., a pendulum-coupled 
weakly to a heat bath. The heat bath excites the oscillator so that its mean energy 
is kBT. Since the coupling to the heat bath is weak, the phase of the oscillator 
progresses nearly uniformly in time with rate wg corresponding to the oscillator’s 
natural angular frequency. Over long periods, however, the continual, random 
excitations of the oscillator cause the phase to drift in a random manner from 
constant rate. 

where vh is the detector response to the gravitational wave signal h. The ratio of 
these two probabilities, 

(77) 

termed the likelihood function, is the odds that the data v is a combination of 
signal v,, and noise, as opposed to a noise alone. For a given observation v the 
likelihood can be viewed as a function of hypothesized signal h, in which case it 
has a convenient interpretation in terms of plausibility: in particular, h(vlh) can 
be interpreted as the plazlsibility that the signal h is present given the particular 
observation U. (The likelihood is not, however, a probability.) This meaning of the 
likelihood is independent of the statistical character of the noise. The difficulty, 
if the noise is not Gaussian-stationary, is in evaluating A. 

3.5.5 The Two-Time Correlation Function 

The correlation function Cz(~) describes the statistical relationship between pairs 
of samples drawn from the random process n(t) at times separated by an interval 
T, Given two samples separated in time by T, a non-zero correlation C~(T) cor- 
responds to an increased ability to predict the value of one member of the pair 
given the other. 

The correlation function Cz(7) is bounded by fCz(O), suggesting that we 
define the correlation coeficient 

which is bounded by fl. If the correlation coefficient is zero for some 7, then 
samples taken an interval 7 apart are entirely uncorrelated: knowledge of one 
does not lead to any increased ability to predict the other. A positive correla- 
tion coefficient tells us that the two samples are more likely close to each other 
in magnitude and sign than not, while a negative correlation coefficient tells us 
that the two samples are likely close to each other in magnitude but of opposite 
sign. The larger the coefficient magnitude the greater the tendency. When the 
correlation coefficient is unity then the correlation is perfect: i.e., when it is +l 
the two samples are always equal, and when it is -1 the two samples are always 
of equal magnitude but opposite sign. 

Now suppose that we sample the position coordinate of the oscillator at inter- 
vals separated by exactly one period 27r/w0. Since the coupling to the heat bath 
is weak, the samples are very nearly identical: in fact, were it not for the contact 
with the heat bath, they would be exactly identical. Thus, we expect that the 
correlation coefficient corresponding to an interval equal to an oscillator period 
should be nearly unity. Continuing to focus on samples taken at intervals equal 
to exact multiples of the period, we expect that the correlation coefficients should 
remain large for small multiples, but should decrease as the interval increases 
since contact with the heat bath will lead, as time increases, to greater drift in 
the phase. 

On the other hand, suppose that we sample the position coordinate of the 
oscillator at intervals separated by exactly odd integer multiples of a half-period 
F/W,,. Now we expect the correlation coefficient to be nearly equal to -1 for small 
intervals, decreasing in magnitude to 0 as the interval increases. 
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3.6 Signal-to-Noise Ratio 

When is a gravitational wave “detectable”? We haven’t yet explored the meaning 
of “detection” qualitatively, let alone quantitatively; nevertheless, we have an 
intuitive feeling that a signal ought to be detectable if the detector’s response to 
the signal is greater than the intrinsic noise amplitude. Let’s develop that idea a 
bit. 

Suppose that we have a detector with noise power spectral density So(f) and 
particular output v(t), which consists of a signal wh(t) superposed with detector 
noise wn(t). The variance of v(t), over an interval [O,T], is 

- Viscous dam ed oscillator 
Structurally amped oscillator B 

Fig. 4. The power spectral density of the two processes whose correlation functions 
are shown in figure 3. Note that, while the correlation functions appear very 
similar as functions of time, strong differences show up in the power spectral 
densities as functions of frequency. 

2 - 1 T 
u?J - Tj s dt v(t)“, 

0 
2 m 

= T o df l~(f)l’. J 

The noise is a random process; so, then, is ~0. Focus on the ensemble average of 
0,” and look in the frequency domain: 

da; 
df = ;la(f)12> 

= ; (Tam+ IG(f)l”>) 

(83) 

(84) 

where the final equality follows when we recognize that the noise is independent of 
the signal. The contribution to the mean signal variance thus consists of separate 
contributions from the signal and from the noise. 

The ratio 
I~h(f)12 
m 

evidently tells us which-signal or noise-is expected (note ensemble average!) 
to contribute more to the amplitude of the detector output in a unit bandwidth 
about frequency f. We can compute a similar, dimensionless quantity over the 
full bandwidth 

(86) 

that tells us which of the signal u,, or the noise vu, is expected to contribute more 
to the variance of the output v. 

Given a particular sample of detector output II, we don’t know, a priori, what 
part is U, and what part (if any) is vh. Consider a quantity that we can calculate 
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3.6.1 Matched Filtering 

Calculating p2 defined by equation 87 does not require or make use of any infor- 
mation about the gravitational radiation source. Suppose that we know, a priori, 
the radiation waveform has the shape Vh(t), and that the question is whether the 
corresponding signal aV,(t - to), for some unknown constants LY and to, is present 
in the detector observed output v(t). Can we make use of this information-the 
signal shape V,(t)-to boost our ability to observe the signal? 

The answer is yes. To illustrate, figure 5 shows an imagined t&, v,, and v 
equal to vh + v, in the left-hand panels, and the corresponding power spectra 
in the right-hand panels. For this illustration we have assumed that the noise is 
white across the detector bandwidth. The signal is not apparent to the eye in 
either v or its power spectrum Pu(f). Figure 6 shows, in the top panel, the filter 
output when just vh is passed through the filter K with impulse-response Vh set 
equal to vh: 

v’(t) = fin &v(T)K(t - T), (94) 

= v;(t) + t&(t), (95) 

where 

K(T) = vh(t), (96) 

(97) 

(98) 

Without loss of generality we assume ?& is non-zero only for positive t. The 
filtered detector output v’(t) consists of a signal contribution vi(t) and a noise 
contribution v;(t). These are shown in the top and middle panels of figure 6, 
respectively. The bottom panel of figure 6 shows the filter output v’ (equal to 
VI, + vi). The presence of the “signal” v(, is now much more evident. 

The filter we have chosen has reduced the total power in the noise relative to 
that in the signal. How it does this is apparent by considering the power spectra 
in figures 5 and 6. In figure 5, the power in vh is seen to be confined to a very 
narrow bandwidth about the frequency of the damped sinusoid. At its peak the 
signal power is about 5 dB greater than noise power. Nevertheless, the total noise 
power, integrated over the full bandwidth, is much greater than the signal power 

Fig. 6. The output of the filter described in equation 95 when just the signal vh 
is filtered (upper panel) and when the detector output, consisting of signal and 
noise, is filtered (lower panel). In contrast to the lower-right panel of figure 5, the 
“signal” (Le., the upper panel) is quite evident even in the presence of noise. 

and, consequently, the signal is overwhelmed by the noise (cf. the bottom panel 
of figure 5). 

Now consider v’. The filter applied to the signal has the impulse response 
of the signal, or the squared magnitude frequency response given by the power 
spectrum in the top panel of figure 5. This is matched to the signal, in the sense 
that the power passed is in the band where the signal power is large and the power 
stopped is in the band where the signal power is small. Thus, what survives in 
v’ is the signal power, together with only that noise power in the narrow band 
where the signal power is large. The signal to noise of the filtered detector output 
v’ is correspondingly much higher in the presence of the signal than is the signal 
to noise ratio of v. 

This example is illustrative. In fact, we can ask, for an arbitrary signal vh em- 
bedded in noise with power spectrum S,(f), for the linear filter that maximizes 
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rank detectors according to their overall noise in a given bandwidth, e.g., 

@n(flr fi) =  s,i”# sh(f)> 

or define an effective band (fa - Af/2, fo + Af/2) over which the detector has 
greatest sensitivity, e.g., 

f. _ f,“df.f/&(f) 
s;;“@ /&(f) ’ 

(Af)2 = f,“df (f - fd*/‘%f) 
.fo”df/Sh(f) 

(102) 

(103) 

Finally, since the noise is referred directly to the amplitude of incident gravi- 
tational radiation, one can calculate the expected SNR of a given signal in the 
detector without reference to the detector’s response function: 

p* = lf4 /mdf lR(f)%f)12 
0 Su(f) 

(104) 

Figure 7 shows the modeled sh(f) for a modern bar detector, while figure 
8 shows sh(f) for a model of the first-generation LIGO instrumentation. Note 
how the bar detector noise is particularly small in two narrow bands** about 
the resonant frequencies of the two-mode system consisting of the bar and its 
transducer, while the interferometer achieves its peak sensitivity over a much 
broader bandwidth. 

3.7.1 An Aside: Noise in Bar Detectors 

It is a common misconception that bar detectors are intrinsically narrow-band 
detectors. While the amplitude of a resonant detector’s response is greatest for 
signal power in the neighborhood of the resonance, the thermal excitation of the 
bar is also concentrated in this band as well. The net result is that the contribution 
of the bar’s thermal noise to the power spectral density expressed in units of h*/Hz 
is effectively independent of frequency. 

**Since the bar detector’s “sensitivity” l/Sh is multi-modal, it is more appropriate to define 
the effective band, as in eq. 102 and 103, separately about each peak. 

IO” 

N 

3 

t -\ -/ 1 

I \ / 1 

102 IO” 
MZ 

Fig. 8. The power spectral density of an effective stochastic gravitational wave 
signal that would mimic the noise in the output of first generation LIGO instru- 
mentation. Plotted is Jsh(f, 2rs frequency f. 

To understand how resonant detectors become narrow band instruments, con- 
sider how the signal appears in the electronics that follow the transducer. The 
resonant character of the detector leads to large amplitude motion for signal power 
near the resonant frequency and small amplitude motion for signal power far from 
the resonance. Correspondingly, the amplified signal is large near to, and small 
far from, the resonance. The amplifier contributes its own noise, however, which 
is approximately white at the amplijier output. Thus, compared to the signal pre- 
sented for amplification, the amplifier noise is relatively large far from resonance 
and relatively small near to resonance. 

In present-day resonant cryogenic detectors, the bandwidth is limited by am- 
plifier noise, referred back to h through the response function. 

Since it is the amplifier noise, when referred back to h through the response 
function of the resonant bar, that limits the instrument bandwidth, why make the 
bar resonant at all? The purpose of making the detector resonant is to provide 
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After we examine the output of our gravitational-wave detector, our degree 
of belief in the supernova proposition may change: we may, on the basis of the 
observations, become more or less certain that radiation from a supernova passed 
through our detector. How do observations change our degree of belief in the 
different alternatives? 

To explore how our degree of belief evolves with the examination of observa- 
tions we need to introduce some notation: 

proposition that gravitational waves from a 
HO = new supernova in the Virgo cluster did not 

I 

, (105) 
pass through our detector in the last hour 

Z= our prior knowledge of astrophysics, including 
our best assessment of the supernova rate 

, (106) 

g=(b o servations from our gravitational wave detector ) ) (107) 

P(4) = ( d g e ree of belief in A assuming that B is true 1, (108) 
TA = (logical negation of proposition A) (109) 

In this notation, P(H&T) is the degree of belief we ascribe to the proposition 
that no gravitational waves from a core collapse supernova in the Virgo cluster 
passed through our detector in the last hour, given only our prior understanding 
of astrophysics; similarly, P(Holg,Z) is the degree of belief we ascribe to the 
same proposition, given both the observation g and our prior understanding of 
astrophysics. 

To understand how P(HOIZ) and P(Holg,Z) are related to each other, we need 
to recall two properties of probability. The first is unitarity: probability summed 
over all alternatives is equal to one. In our example, the two alternatives are that 
a supernova occurred or it did not: 

P(ffolg>4 + P(-Holg>4 = 1. ( 10) 

The second property we need to recall is Bayes Law, which describes how condi- 
tional probabilities “factor”: 

P(AIB, C)P(SlC) = P(A, BIG) = P(BIA, C)P(AIC). 

Combining unitarity and Bayes Law, it is straightforward to show that 

(111) 

A(s) 
p(yHo’g’T) = A(g) + P(HOIZ)/P(~H$) 

where 

A(s) = P(gl~Ho,~)IP(slHo,~), 

PkIfhQ = 
probability that g is a sample of 
detector output when Ho is true ’ (114) 

~(sI+b,~) = 
probability that g is a sample of 
detector output when Ho is false (115) 

The two probabilities P(gIHo,Z) and P(g/lHo,Z) depend on the statistical 
properties of the detector noise and the detector response to the gravitational wave 
signal. In some cases they can be calculated analytically; in other circumstances 
it may be necessary to evaluate them using, e.g., Monte Carlo numerical methods. 
Regardless of how one approaches data analysis, the detector must be sufficiently 
well-characterized that these or equivalent quantities are calculable. 

Equation 112 describes how our degree of belief in the proposition -Ho evolves 
as we review the observations. If A is large compared to the ratio P(HoIZ) to 
P(yHoIZ), then our confidence in yH0 increases; alternatively, if it is small, then 
our confidence in lH0 decreases. If A is equal to unity-i.e., the observation g is 
equally likely given Ho or YHo-then the posterior probability P(Holg,Z) is equal 
to the prior probability P(H&) an d our degree of belief in Ho is unchanged: we 
learn nothing from the observation. 

We can now answer the question that began this section. We understand 
confidence to mean degree of belief in the proposition that radiation originating 
from a new supernova in the Virgo cluster was incident on a particular detector 
during a particular hour. In response we make a quantitative assessment of our 
degree of belief in that proposition-the probability that the proposition is true. 

4.2 Guessing Nature’s State 

Begin again: “With what confidence can we conclude that, in the last hour, 
gravitational waves from a new core collapse supernova in the Virgo cluster of 
galaxies passed through our gravitational wave detector?” 

As before, we have the hypothesis Ho and its logical negation, yH0. The 
gravitational waves from a new Virgo cluster supernova either passed through our 
detector, or they did not. Our goal is to determine, as best we can, which of these 
two alternatives correctly describes what happened. 

-187- 





False alarm and dismissal rates describe our confidence in the long-run behav- 
ior of the associated decision rule. To understand the implications of this measure 
of confidence, suppose that we have not one, but N independent and identical 
detectors all observing during the same hour. We use the same test, with false 
alarm rate cy and false dismissal rate p, on the observations made at each detector, 
and find that, of these N observations, m  lead us (through our inference rule) to 
reject Ho and N - m  lead us to accept Ho. For a concrete example, suppose Q is 
l%, N is 10 and m is 3. 

The probability of obtaining this outcome when the signal is absent (Ho is 
true) is the probability of obtaining m  false alarms in N trials, or 

N! 
P(mlHo, N) = (N _ m)!m!am(l - alNmrn. (116) 

In our example, P(mlHo, N) evaluates to 1.1 x 10m4. It is thus very unlikely that 
we would have made this observation if the signal were absent. Does this mean 
we should conclude the signal is present with, say, 99.99% confidence? 

No! P(mlHo, N) describes the probability of observing m  false alarms out 
of N observations. When the signal is present, however (i.e., when Ho is false), 
there are no false alarms and both cy and P(m(Ho, N) are irrelevant. There are, 
however, N - m  false dismissals; thus, the relevant quantity is P(ml-Ho, N), the 
probability of observing N - m  false dismissals: 

P(ml-%, N) = (N -NL,!m! (I- WP-” (117) 

If, in our example, the false dismissal rate p is lo%, then the probability of 
observing seven false dismissals out of ten trials is 8.7 x 10m5. 

The particular outcome of our example-three positive results out of ten 
trials-is, in the grand scheme of things, very unlikely; nevertheless, what is im- 
portant to us is that it is more unlikely to have occurred when the signal is 
present than when it is absent. Despite the apparently overwhelming improbabil- 
ity of three false alarms in ten trials, it is nevertheless, slightly more likely than 
the alternative of seven false dismissals in ten trials. 

We can now answer the question that began this section. We understand 
that question to ask for the error rate of the best general procedure for deciding 
between the alternative hypotheses. There is an implicit assumption regarding 
the decision criteria, which tells us what “best” means in this context. In the 

context of these criteria, we calculate the error rates for different inference rules, 
rank the different rules, and find the best rule and its corresponding error rates. 

Contrast this with our understanding of the identically worded question as 
we understood it in the previous subsection. There, we understood confidence 
to mean the degree of belief that we should ascribe to alternative hypotheses; 
here, we understand confidence to refer to the overall reliability of our inference 
procedure. There we responded with a quantitative assessment of our degree 
of belief in the alternative hypotheses, given a particular observation made in a 
particular detector ouer a particular period of time; here we responded with an 
assessment of the relative frequency with which our rule errs given each alternative 
hypothesis. 

There we did not make a choice between alternative hypotheses; rather, we 
rated them as more or less likely to be true in the face of a particular observation. 
Here, on the other hand, we do make choices and our concern is with the error 
rate of our procedure for choosing, averaged over many different observations and 
many different decisions. 

Analyses like the ones in this section, where probability is interpreted as the 
limiting frequency of repeatable events and the focus is on false alarm and false 
dismissal frequencies, are termed Frequentist analyses. They have particular util- 
ity when it is possible to make repeated observations on identical systems: e.g., 
particle collisions in an accelerator, where each interaction of particle bunches 
is a separate “experiment.” Analyses like those in the previous section, where 
probability is interpreted as degree-of-belief and the focus is on the probability 
of different hypotheses conditioned on the observed data, are termed Bayesian 
analyses. 

Bayesian analyses are particularly appropriate when the observations or ex- 
periments are non-repeatable: e.g., when the sources are, like supernovae, non- 
identical and destroy themselves in the process of creating the signal. In this case 
we are interested in the properties of the individual systems and would prefer a 
measure of the relative degree of belief that we should ascribe to, for example, the 
proposition that the signal originated from a particular point in the sky. 

That Bayesian and Frequentist analyses are different does not imply that one is 
right and the other wrong. Bayesian and Frequentist analyses do not address the 
same questions; so, they are not required to reach “identical” conclusions. On the 
other hand, it may well be that one analysis is more appropriate or responsive to 
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the orbital radius: 

2 
n, 1.5x1o12 .d cm3. 

Thus, irrespective of the total system mass, if a binary system is to radiate in 
a band where these detectors are sensitive, the central density of its components 
cannot be much less than nuclear density. With this we are forced, for astrophys- 
ical objects, to restrict attention to neutron stars or black holes. 

The nuclear and super-nuclear equation of state place an upper limit on the 
neutron star mass, which does not apply for a black hole. The dynamics of 
the binary orbit, however, does place an upper limit on the mass of the black 
hole binaries that the ground-based interferometric detectors may observe. With 
every orbit the binary radiates away more of its binding energy, leading to a more 
compact orbit. Eventually the system coalesces: the two components merge, 
collide, or tidally disrupt. Even if we imagine that the components are point 
masses, so that there is no tidal disruption or collision that would terminate 
the inspiral signal at some finite orbital frequency, relativity appears to impose 
a maximum orbital frequency on binary systems. For approximately symmetric 
binary star systems (i.e., those with equal mass components) this limit is33 

(124) 

where M  is the system’s total mass. Thus, the component black hole masses must 
be less than 15 Ma if the inspiral signal is to survive into the bandwidth where 
the detector is most sensitive. 

It is currently thought that, during the epoch when the radiation from the 
binary is in the bandwidth where the LIGO and VIRGO detector sensitivity is 
greatest, the binary components are well approximated as point masses for the 
purpose of computing the radiation and orbital evolution34 (There is some small 
suggestion that resonant tidal interactions may complicate this picture35). Dur- 
ing this epoch, the gravitational fields that determine the binary evolution are 
sufficiently strong that first order perturbation theory is not adequate to compute 
the orbits; nevertheless, the fields are not so strong that computing the orbits 

and the radiation via higher order perturbation theory is impractical.36,37 For 
this overview, no additional insight is gained by considering anything higher the 
quadrupole formula radiation, in which case the excitation of the detector-an 
effective h(t) that is a superposition of the radiation in the two polarization states 
of the wave-is3*,3g 

where 

h(t) = $$3 (xfM)“‘” cos@(t), 025) 

(mlm2)3’5 
M  E  (ml + m2)l15 

(1 + z), 

O2 E  4 [F;(l +cos2 L)~ + 4F,2 cos’ L] , 

f(t) = & (&&,“‘” > (128) 

(126) 

(127) 

59(t) = J” 27rf(t’)dt’, (129) 

dL is the cosmological luminosity distance to the source, ml and m2 are the binary 
system’s component masses, z is the source’s cosmological redshift, L is the angle 
between the binary’s angular momentum axis and the line of sight to the detector, 
and To is a constant of integration. 

What can we determine through observation of the signal from such a system? 
The signal-to-noise, of course, which takes on a particularly simple form38,3g: 

where re is a characteristic distance that depends only on the effective power 
spectral density of the source, 

and the average denoted by the over-bar is over both an ensemble of detectors 
and all relative orientations of the source and the detector. For the initial LIGO 
and VIRGO detectors, rs is about 13 Mpc. In order that we are confident that we 
have seen a source, the SNR p” should not be much less than about 65 in a single 
detector; so, we don’t expect to see sources from distances beyond more than a 
few rs. 

How many of these sources can LIGO expect to see? Unfortunately, we know 
very little about the rate of compact binary coalescence, except that it is rare. 
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5.1.3 Black Hole Formation 

Black holes form in the collision of neutron stars at the end-point of neutron 
star binary inspirals; they also form in the core collapse of sufficiently massive 
stars. Unless the formation mechanism is especially symmetric, the new black 
holes that form will be initially quite deformed and will need to radiate away 
their deformations before they can settle down into a quiescent state, which is 
axisymmetric. 

Quiescent black holes are characterized only by their mass M and angular 
momentum J. (And electric charge, too; however, astrophysical black holes are 
unlikely to carry any significant electric charge.) Correspondingly, while the initial 
radiation from the formation of a black hole depends on the details of the forma- 
tion, the final radiation depends principally on M and J. In fact, the late-time 
waveform from a perturbed black hole is a superposition of exponentially damped 
sinusoids, whose frequencies and damping times depend only on M and J, the 
overtone number n, and the harmonic order e and m of the perturbation. 

Almost all of the modes of a black hole are very strongly damped. The most 
weakly damped modes are associated with the fundamental quadrupole-order ex- 
citations. Even these are strongly damped unless the black hole is very rapidly 
rotating. For this reason, we focus attention on the fundamental quadrupole 
modes, which are the most likely to be detectable. Setting aside the start-up 
transient associated with the details of the initial excitation, a good model for the 
“ring-down” of a newly-formed or perturbed black hole is thus62~2g 

hRMS(t) = 2 
\i 

2ESrftlQ sin (27rjt) 
Q(a)F(a) r 

(t > 01, (134) 

where the amplitude is averaged (in a root-mean-square sense) over all orientation 
angles, 

j E la.KHz(%) ($,)I 

Q 2~ 2(1 - CL)“‘~, 
J 

a FE -, 
M2 

F(a) 2( 1 - Z(l - a)3’1°, 

T is the distance from the black hole to the detector, E is the fraction of the total 
mass of the black hole carried away in radiation, and we have assumed that all five 

of the fundamental tone quadrupole modes are excited equally. Corresponding to 
this radiation is an estimated signal-to-noise ratio of 

d=1+34G(a)‘~(~)2(~)310-4~~2’, (139) 

where we have assumed 

. an efficiency E for fraction of the rest mass of the system radiated gravita- 
tionally that is equivalent to what is found in black hole collisions, and 

l the effective noise power spectral density is approximately constant over the 
signal bandwidth (which is broad for strongly damped oscillations). 

The rate of black hole formation is entirely uncertain; however, most astro- 
physicists see no reason why the same mechanisms that make neutron stars cannot 
also make black holes at approximately the same rate.45 By our present under- 
standing of formation mechanisms, this rate is not high even at the distance of 
the Virgo cluster (- 20 Mpc): perhaps as many as a few per year, but likely much 
less. Consequently, p’ should be at least on order 30-35 for a confident detection 
in ideal circumstances.‘j3 The caveat of “ideal circumstances” is an important one, 
however: the character of the waveform for this source-an exponentially damped 
sinusoid-is exactly the kind of technical noise one might expect in a real interfer- 
ometer owing to transient disturbances that affect, for example, the suspension of 
the interferometer mirrors. Thus, without strong assurance that what is observed 
is not a weak disturbance intrinsic to the detector, prospects are not good for 
observing radiation from this source. 

5.1.4 Stellar Core Collapse 

Theoretical models of stellar core collapse, and the corresponding gravitational 
wave luminosity, have a long and checkered history: estimates of the gravitational 
wave luminosity have, over the last 30 years, ranged over more than four orders of 
magnitude. 63-67 It is not simply the luminosity that is unknown: the waveforms 
themselves are also entirely uncertain, leading to a further difficulty in estimating 
the detectability of this source. (Examples in the literature can be found in the 
citations.63~65-70~‘3 Nevertheless, it is still possible to evaluate what is required of 
stellar core collapse in order that it be observable in a given detector.71 
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themselves to the star’s rotation, remaining always axisymmetric and, therefore, 
not contributing to any gravitational radiation. As the star cools or spins-down 
(owing to, e.g., magnetic multipolar radiation if it is a pulsar), the shape of its 
crust cannot adjust continuously to its new conditions. The stresses in the crust 
build until the crust fractures, relieving the stress. The final crust shape is likely 
to be non-axisymmetric and responsible for gravitational radiation as the star 
rotates. 

Suppose that the star is rotating about a principal axis of its moment of inertia 
tensor with rotational rate j. Let I3 be the moment of inertia along the axis or 
rotation, Ii and 1s be the other two principal moments of inertia, and define E to 
be the difference between Ii and I2 relative to 13: 

E = (Iz-I1)/I3. (150) 

Setting aside the very slow spin-down of the system as its angular velocity changes 
and averaging over the angles that describe the relative orientation of the pulsar 
with respect to the detector, the characteristic radiation from this system is given 

by 

h(t) N  ho cos(47-r jt + 40), (151) 

= 4.8 x Wz6 
I 

lo45 g cm-3 10-67 (153) 

The power radiated gravitationally through this mechanism depends, through 
t, on the degree of asymmetry that can be supported by the neutron star crust. 
Alpar and Pines 73 have looked at the structure of the crust and the likely strain 
that it can support. For our purposes it is instructive to look at the most ex- 
treme possibility they considered: that the crust is well approximated as a pure 
Coulomb-lattice crust. Such a lattice could sustain a strain some lo3 to lo4 times 
as much as is typical of terrestrial material. When the maximum allowable strain 
is supposed to be supported by the solid part of the neutron star (which is only a 
small fraction of the entire star), one arises with a maximum E of approximately 
10-a. 

This is an extreme value: it depends on the crust being a pure Coloumb lattice, 
assumes that some mechanism has led it to be stressed to its fracture point, and 

that the corresponding strain is principally quadrupolar. For young neutron stars 
one might imagine this conspiracy of circumstance possible; however, for older 
neutron stars plastic flow of the crust would lead to relaxation over the age of the 
most rapidly rotating neutron stars-the so-called millisecond pulsars-reducing 
the maximum E for these systems to no greater than 4 x 10-r’. 

5.2.2 Observational Constraints 

There is observational evidence that, at least for the older, millisecond pulsars, 
E cannot be much greater than this limit. The power L radiated gravitationally 
by a spinning neutron star comes directly from the star’s rotation; consequently, 
radiation back-reaction must slow the star in such a way that energy is conserved. 
This leads to a slow spin-down of the star: if P is the spin period, then its rate 
of change &, assuming that gravitational radiation reaction is the only source of 
snin-down. is 

LP3 
p=@Gjv 

Since the radiated power L is proportional to t21/P6 (cf. 31), the measured period 
and period derivative place a strict upper limit on E for isolated pulsars. 

The spin-down rate (P) of most pulsars has been measured. If we take the 
most extreme view and ascribe all of the spin-down to angular momentum carried 
off by gravitational waves, the oblacity of millisecond pulsars still cannot exceed 
lo-’ for most millisecond pulsars.73 

For a few young, isolated pulsars, timing observations are so good that we can 
place still stronger limits on E: limits that exclude the possibility that a significant 
part of the spin-down is owing to radiation reaction. For these pulsars, not only 
the rate of the spin P but also its second derivative p has been measured. Using 
only that the rotational energy of the star is proportional to I/P2 and that the 
radiated power is proportional to Pmlmn, one can quickly show that 

g-2+ 
P2 (155) 

If the spin-down is due to quadrupole gravitational radiation reaction, n is equal to 
5 and higher-order radiative moments would lead to larger n. On the other hand, 
if the spin-down is due to, say, magnetic dipole radiation (from the rotation of the 
pulsar’s magnetic dipole moment), n is equal to 3. There are no isolated pulsars for 
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itationally. Misalignment of an axisymmetric neutron star’s angular momentum 
and body axes could arise as the result of crustal fractures associated with a 
neutron star quake. 

The same observational constraints that apply to gravitational radiation aris- 
ing from the rotation of a non-axisymmetric neutron star about a principal axis 
also apply to radiation arising from precession of an axisymmetric neutron star 
(cf. Sec. 5.2.2). 

While neutron star precession is-in principle-possible, if the neutron star is 
also a pulsar, the precession should also manifest itself as periodic variations in 
the electromagnetic pulse shape. At present there is no observational evidence 
for pulse shape variations induced by free precession. This may be because the 
misalignment is too small to be observed in the pulse shape or because the stresses 
associated with misalignment quickly bring the star back in to alignment. 

Gravitational radiation associated with precession of an axisymmetric star 
occurs at both the rotational frequency and twice the rotational frequency75; con- 
sequently, it can be distinguished from the radiation associated with a fully non- 
axisymmetric star rotating about a principle axis. Interestingly, observing the 
amplitude of the radiation at both the rotation frequency and twice the rotation 
frequency allows one to determine all the angles that characterize the orientation 
of the star relative to the line-of-sight (LOS): the angle between the angular mo- 
mentum and the LOS as well as the angle between the body axis and the angular 
momentum. If the star is also observable as a pulsar, then one can test mod- 
els of pulsar beaming, since, together with the observed pulse shape, these make 
predictions about the angle between the LOS and the magnetic axis. 

5.2.5 Thermally Driven Non-Axisymmetry 

Timing of the x-ray emission from several accreting neutron stars has revealed 
quasi-periodic variability that can be explained as arising from the rapid rotation 
of the underlying neutron star. An intriguing coincidence in these observations 
is that the rotation rate of all these systems appears to be close to equal. This 
suggests that there is some underlying mechanism that ensures that accretion 
spins these stars up to-but not beyond-this limiting angular velocity. One 
possibility is that the rotation rate is limited by gravitational radiation reaction. 

How might gravitational radiation limit the rotation rate of an accreting sys- 
tem? If the accretion leads to a non-axisymmetry in the neutron star then, as the 
star spins-up, the angular momentum radiated by this rotating non-axisymmetry 
increases until it balances the angular momentum accreted, limiting the star’s ro- 
tation rate. The angular momentum radiated is, like the radiated power, a strong 
function of angular velocity (j is proportional to R5, where R is the angular ro- 
tation rate); so, it is not surprising that the limiting angular velocity should be 
similar for these systems. 

Proposals like this are characteristically made for systems where there appears 
to be some upper limit to the rotation rate. To be plausible, there must be 
some universal mechanism whereby the same process that spins the star up also 
leads to a non-axisymmetry that can cause a radiative loss of angular momentum. 
Recently Bildsten76 offered some promising ideas for a mechanism like this that 
would operate in rapidly accreting, low magnetic field neutron stars like Sco X-l. 
At the core of Bildsten’s proposal is the observation that localized heating of the 
neutron star owing to non-isotropic accretion leads to differential electron capture 
rates in the neutron star fluid. These lead, in turn, to density gradients as nuclear 
reactions in the neutron star adjust its composition. Bildsten suggested that, if the 
rotation axis is not aligned with the accretion axis and if some other mechanism 
(in Bildsten’s original suggestion, a magnetic field) can break the symmetry still 
further, these density gradients may form in a non-axisymmetric fashion. 

There are two big “ifs” in this proposal. Even if the accretion disk is mis- 
aligned with the star’s rotation axis, the density perturbations will be distributed 
symmetrically about the star’s rotation axis unless some other mechanism can 
be shown to break the symmetry further. Additionally, though not recognized 
in the original proposal, buoyancy forces will lead the density perturbations to 
re-distribute themselves in the star symmetrically about its rotation axis, signif- 
icantly suppressing the gravitational radiation. For these two reasons the initial 
excitement over the Bildsten proposal has dampened. It should not be extin- 
guished, however: the recognition that accretion can lead, through pyro-nuclear 
reactions, to density perturbations that may radiate gravitationally is certainly 
sound and new. With time will come greater understanding of where and how 
this effect may arise in nature, and that greater understanding may yet include a 
robust mechanism for producing significant gravitational radiation from accreting 
neutron stars. 
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menkm. The back-reaction of the radiation adds negative angular momentum 
to each of these modes; correspondingly, the co-rotating mode is damped and 
the counter-rotating mode is anti-damped: i.e., it grows. As it grows, of course, 
it radiates more strongly, leading to greater anti-damping: the mode undergoes 
exponential growth. 

This general mechanism by which gravitational radiation reaction can lead to 
amplification of a mode that is counter-rotating in the body frame but co-rotating 
in the inertial frame was first discussed by Zel’dovich in the context of rotating 
black holes. His concern was that, through this mechanism, a rotating black hole 
should radiate-a result that anticipated the more general result of Hawking. The 
first application to stars came from Chandrasekhar7g and Friedman and Schutzso 
whose focus, however, was on a different set of modes. 

Viscosity damps the R-modes. If the viscosity is large enough, then the viscous 
damping exceeds the anti-damping caused by radiation reaction and the mode is 
stabilized. Present understanding of the viscosity of neutron star fluid suggests 
that there is a short period in the life of a new-born neutron star, lasting perhaps 
one year, when the mode may be unstable and a rapidly rotating star may be a 
strong, nearly periodic source of gravitational radiation. The radiation is “nearly” 
periodic because its amplitude is so great that, over the course of the year, the 
star’s angular rotation rate may evolve from lo3 to lo* Hz, simply due to the 
angular momentum carried away in the radiationsis 

5.3 Stochastic Gravitational Radiation 

In the previous subsections we discussed burst and periodic sources of gravitational 
radiation. In both cases the discussion focused on the source, and the radiation 
was characterized typically in terms of a waveform h(t), which depends on the 
details of a source and its orientation with respect to the detector. 

The situation for a stochastic gravitational wave signal is different. A stochas- 
tic gravitational wave signal is intrinsically random in character. In particular, it 
is not generated by an isolated source, it is not incident on the detector from a 
single direction, and it has no characteristic waveform. 

In fact, a stochastic signal can be treated as just another source of detector 
noise. The stochastic radiation has an h(t) that is characterized solely by its 
correlation functions or associated spectra; correspondingly, the detector output 

owing to the stochastic signal is characterized in terms of correlation functions or 
associated spectra. 

Detection of any signal hinges on observing some characteristic that distin- 
guishes signal from noise. If a stochastic signal appears in a detector no different 
from intrinsic detector noise, how do we make the critical distinction that allows 
us to say we have detected a signal? 

The essential difference between the action of a stochastic signal and intrinsic 
detector noise is that stochastic radiation incident on two detectors is correlated, 
and the correlation depends in a completely predictable way on the relative orien- 
tation and separation of the detectors. Any gravitational wave signal-stochastic 
or otherwise--can be resolved into a superposition of plane waves of different fre- 
quencies and propagation directions bathing the detectors. A component of the 
radiation of given frequency and incident direction drives two or more detectors 
coherently, with a phase delay that depends on the incidence direction, detector 
separation, and radiation wavelength. For components whose wavelength is much 
larger than the separation between the detectors, the phase difference is only 
weakly dependent on the radiation wavelength or incident direction; so, summed 
over incident direction there is a strong correlation between the output of the 
detectors. On the other hand, for radiation components with wavelengths much 
smaller than the separation between the detectors, the phase difference depends 
strongly on the incident direction and the wavelength; so, summed over incident 
directions, the correlation between the output of the detectors is weak. Thus, in 
the presence of a stochastic gravitational wave background, the output of two or 
more detectors should show predictable correlations that depend on their relative 
separations, relative orientations, and the stochastic signal’s spectrum.*3 

When considering sources of detectable stochastic gravitational radiation for 
ground-based detectors, it is conventional to enumerate the contributions of pri- 
mordial origin: e.g., radiation arising during an inflationary epoch in the early 
universe,84 from the decay of a cosmic string network,85 or from a phase transi- 
tion in the early universe. s6m8s Less frequently discussed-perhaps because it is so 
mundane-are the contributions arising from the con&%n limit of discrete but 
unresolved sources: e.g., core-collapse supernovaei or binary inspiral. In fact, 
the contribution at low-frequencies (periods of hours to minutes) to the stochas- 
tic signal from unresolved galactic binary systems is expected to be many times 
greater than the intrinsic detector noise of the proposed space-based interferomet- 
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Fig. 11. The left-hand panes show waveforms corresponding to the superposit ion 
of many discrete and  idealized black hole formation events, with the number  of 
events in a  fixed interval Poisson distributed. The rate increases by an  order of 
magni tude from the top to the middle panel,  and  again from the middle to the 
bottom panel.  The r ight-hand panes show the distribution of wave ampli tude 
derived from the corresponding left-hand panel.  

at a  random moment  relative to the signal start time). In circumstances like these 
we expect  The Central Limit Theoremgo to apply, leading to a  normal distribution 
for h(t). On  the other hand,  at the lower rate pictured in the top panel,  there 
are not enough  events superposed at any given moment  for us to expect  h(t) to 
exhibit a  normal distribution. In the r ight-hand panels of f igure 11  we show the 
distribution of h(t) taken from the left-hand panel  and  find that these intuitions 
are borne out. 

Note that none  of these conclusions depend in any way on  the details of the 
signal from an  individual source: instead of the superposit ion of damped sinu- 
soids we could just as well have constructed h(t) from the superposit ion of binary 
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Fig. 12. As in figure 11, but with band-l imited binary inspiral waveforms. 

inspiral signals in a  fixed bandwidth. W e  do  exactly that in figure 12. Note how 
the distributions of h(t) at high rate are, for superposit ions of large numbers of 
signals, identical (i.e., they are normal distributions). 

Despite the fact that the distribution of h(t) arising from the superposit ion of a  
large number  of sources are identical, visual inspection suggests that there are still 
differences. These differences are associated with the correlations: the distribution 
of the products h(t)h(t +  r) as  a  function of 7. These are very different for the 
damped sinusoids, which are characteristic of black hole perturbations, and  the 
“chirps,” which are characteristic of binary inspirals. In figure 13  we show the 
power  spectral densit ies of the superposit ions in f igures 11  and  12. Note how 
the power  spectral densit ies of the stochastic signals formed from the random 
superposit ion of events of a  given character preserve the spectral shape of the 
underlying signal, with the overall ampli tude proport ional to the event rate. It 
is this property of the superposit ion that permits us to predict the character of 
the stochastic signal arising from the confusion limit of a  large number  of sources; 
conversely, observat ion of a  stochastic signal provides us, through its ampli tude 
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CWDB population: 

dti+ dtii d dndf 

df df = -C--l dj df dt 0’31) 

The orbital frequency evolution rate df/dt is known (it is proportional to f1113) 

and LISA observations will determine the number density dn/dj; consequently, 
from LISA observations we can determine d&/dj and dli-ldj and learn about 
the end of common envelope evolution and the mass spectrum of white dwarfs in 
CWDBs. 

6 Conclusions 

In these lectures I’ve tried to give a brief overview of how we think about gravi- 
tational waves when we set out to detect them, and provide a snapshot of current 
thinking on the anticipated wave sources. Along the way, I’ve tried to describe 
some of the science we can hope to do once we can reliably detect gravitational 
wave sources. 

The principal difficulty in discussing the sources that we hope to observe is 
our real lack of knowledge of their character. As is often the case, however, this 
difficulty is really a disguised opportunity: when the detectors come on-line and we 
begin to detect gravitational radiation sources, we will not simply be confirming 
what we already know, but learning things entirely new about the cosmos! 
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