

IWAA97 Argonne National Laboratory

Considerations in the Measurement of Particle Accelerators with Laser Trackers

Bob Bridges SMX Corporation

Topics

- Tracker Measurement, Certification, and Characterization
- Radial Measurement
- Transverse Measurement
- Level Measurement
- Accelerator Applications

Tracker Measurement

Coordinates

- · Radial distance
 - Interferometer or absolute distance (ADM) system
- · Azimuth angle and elevation angle
 - Angular encoders

Other

- Level
- External temperature sensors

Tracker Certification

Performance Tests

- Calibration: Confers traceability in either the *strong* or *weak* sense
- Compensation
- Interim Tests

Standards

- ANSI standard: ASME Working Group B89.4.19
- ISO standard

Tetrahedron Artifact

Tracker Characterization

- ISO Reference Documents: The GUM and the VIM
- **Accuracy:** The difference between the true value and the measured value
- Repeatability: The "spread" of values measured under fixed conditions and over a short time. Varies as $1/\sqrt{N}$
- **Uncertainty:** An estimate of the "dispersion" of values reasonably attributed to the measurand

New Type of Radial Measurement: ADM

Radial Measurement Technologies

- Interferometer: Fringe counting with a HeNe laser
- Absolute distance (ADM) system: Pulse and sinusoid time-of-flight with a semiconductor laser

Purpose of ADM

- Interferometer loses count if the beam is broken
- ADM sets distance and passes to interferometer

Applications of ADM

- Multiple targets; cluttered environments

Radial Uncertainty

 $\Delta n_{\rm A}/n_{\rm A}\sim 10^{-6}$

Interferometer

• Distance formula $r = N\lambda_0/2n_A$

Uncertainty

- In fringe count $\Delta N/N \sim 10^{-7}$ - In vacuum wavelength $\Delta \lambda_0/\lambda_0 \sim 10^{-7}$

In refractive index of air

- in retractive index of all

ADM

• Distance formula $r = N_{\rm RF} \lambda_{\rm 0,RF}/2n_{\rm A,G}$

• Uncertainty: similar to above but slightly higher $\Delta N/N$

Refractive Index of Air

- Calculations: Edlin or Ciddor equation
- Sources of uncertainty: (1) sensor uncertainty, (2) variations in the air
- Rules-of-thumb for length error
 - Temperature 1 ppm/°C
 - Pressure 0.4 ppm/mmHg
- Typical accuracies (1 sigma)
 - In index: $\Delta n_A/n_A \sim 1 \text{ ppm}$
 - In length: $\Delta r_{tot} = \{0.0011, 0.0015\}$ inch @ 115 ft

Other Radial Considerations

- Periodic Calibration
 - Weather station sensors (thermometer, barometer)
- Home Reset
 - Corrects "dead path" lengths
- Offset Compensations
 - Pivot to home (R0), Pivot to back mirror
- ADM Compensation and Calibration

Transverse Accuracy

• Basic Accuracy: ~ 5 times larger than radial

$$\Delta x_{\text{trans}} = \Delta (r\sqrt{\theta^2 + \phi^2}) \sim 5 \text{ ppm}$$

- Quadratic Effects
 - Transverse temperature gradient

$$\Delta x_{\text{trans}} \cong (10^{-6} \Delta T/^{\circ} \text{C})(dT/dx_{\text{trans}})r^2$$

$$\Delta x_{\text{trans}} \cong 0.5 \text{ mm} (@ dT/dx_{\text{trans}} = 1 \text{ °C/m}, r = 30 \text{ m})$$

- Pressure gradient $\Delta x_{\text{trans}} = 15 \ \mu\text{m}$ (at $r = 30 \ \text{m}$)
- Earth's curvature $\Delta x_{\text{trans}} = 70 \ \mu\text{m}$ (at $r = 30 \ \text{m}$)

Transverse Compensation

- Angular Encoders: Mapping improves accuracy.
- Laser / Axis Alignment: Compensation parameters improve accuracy.
 - Axis Axis offset and axis non-squareness
 - Laser offset Δx and Δy between axes and laser
 - Laser tilt θ_x and θ_y between axes and laser
 - Retrace coordinates
 - Encoder corrections

Traditional Aim Compensation

The Routine AIM Compensation

Level

Technology

 Accelerometer that uses an electromagnet to "balance" a pendulum

Accuracy

• 1 arc second

Application

- Rapidly determine whether accelerator components are properly aligned with respect to gravity
- Improve angular accuracy along the short dimension of the tunnel

Calculation of Measurement Uncertainty

- Random (Repeatability) Components: Reduce by $1/\sqrt{N}$
 - Tracker repeatabilities: radial, transverse
 - External repeatabilities: vibration, targets, etc.
- Systematic (Accuracy) Components:
 - Tracker accuracies: radial, transverse
 - External errors: thermal gradients, "bumps," etc.
- Calculation Procedure: Start with the appropriate formula; take derivatives and multiply by independent variables; calculate the RSS value.

Installation and Alignment of Accelerator Components

- **Types of Components:** Dipoles, quadrupoles, sextupoles, collimators, etc.
- Types of Measurements
 - Coordinates: Component control points and axes
 - Coordinates: Tunnel control points
 - Relative Orientation: Among control points and with respect to gravity
 - Expansion: Temperature sensors compensate for material expansion

Trackers in Accelerator Installation and Alignment

Page 1 of 2

- Advantages: Faster and more accurate than theodolites, especially in long, narrow tunnels
- ADM: Speeds alignments by enabling rapid measurement of multiple targets. Also useful for tight spaces and cluttered environments.
- Headset: Enables single-person alignments. Useful companion accessory for ADM.

Trackers in Accelerator Installation and Alignment

Page 2 of 2

- Level: Quickly and accurately determines orientation with respect to gravity.
- External Temperature Sensors: Convenient way to compensate for material expansion
- Take Advantage of Radial Accuracy: e.g., Put the tracker in line with with the tunnel control points.