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Abstract

The possibility that quantum mechanics itself could be non-linear has run up against
difficulties with relativistic covariance. Most of the schemes proposed up to now
engender superluminal communication, and those that don’t, have been equivalent to
linear theories. We show in a simplified model that a proposal based on the consistent
histories approach to quantum mechanics avoids the usual difficulties and a relativistic
quantum theory with non-linearly defined histories is possible.

1 Introduction

There is presently a growing interest in non-linear quantum mechanics resulting from a
variety of motivations: fundamental speculation, presence of gravity, string theory, rep-
resentations of current algebras, etc. Although apparently well motivated, it became
apparent that non-linear theories suffer from some prima facie serious difficulties. These
are of various types, but the most notable is conflict with relativity or causality. N. Gisin
[1, 2] and G. Svetlichny [3] pointed out that non-linearity allows us to use EPR-type cor-
relations and the instantaneous nature of state-vector collapse to send a signal across a
space-like interval. Analyzing further, one finds that one has in fact a contradiction with
relativity [4]. Certain progress has been made in overcoming these difficulties. One of
the proposals is based on the idea that since the difficulty stems from the instantaneous
state-vector collapse in measurement, a modification of measurement algorithms could
allow for non-linear processes without superluminal signals. G. A. Goldin, H.-D. Doeb-
ner and P. Nattermann [5, 6, 7] have argued that non-linearity per se does not lead to
superluminal signals (this was also pointed out by Svetlichny [4]), as with the prima facie
reasonable assumptions that all measurements are in the end expressible in terms of mea-
surements of position, certain non-linear Schrödinger equations are then observationally
equivalent, via a non-linear “gauge transformation”, to the free linear equation. We shall
call these the GDN theories. Unfortunately, these theories, and others studied by these
authors, are non-relativistic, and we are still far from understanding the true relation of
linearity to relativity.
Here we adopt an even more radical view and reconsider the question from the point

of view of a quantum theory without measurements, as the complete absence of the
“measurement process” will eliminate any obstruction to non-linearities from the man-
ifest non-covariance of this process. Of the several “measurementless” theories, the one
most adaptable to relativistic considerations is the consistent histories approach already
widely discussed in the literature [8, 9].
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We argue that in the histories approach, non-linearity and relativistic covariance can
indeed coexist peacefully and present a simple model to support this view. Such a model
cannot yet be taken as a proposal for a realistic theory but does establish the logical point
and suggests where one should look for experimental evidence.

2 Linear and non-linear histories

Let H be a Hilbert space and Ψ ∈ H a normalized vector. For each i = 1, . . . , n, let P (i)
j

where j = 1, 2, . . . , ni, be a finite resolution of the identity. We call each state vector of
the form

PαΨ = P (n)
αn

· · ·P (j)
αj

· · ·P (2)
α2

P (1)
α1
Ψ (1)

a history . Let

pα = ||PαΨ||2. (2)

One interpretation of the above quantities is that Ψ is a Heisenberg state and that P (i)
j

is the spectral resolution of a Heisenberg observable A(i) =
∑

λ
(i)
j P

(i)
j at time ti where

t1 < t2 < · · · < tn−1 < tn. In this case, pα is the joint probability of getting the sequence
of outcomes λ(1)

α1 , . . . , λ
(n)
αn in a sequence of measurements that correspond to the observ-

ables A(1), . . . , A(n). The coherent histories interpretation of quantum mechanics however
goes beyond this viewpoint and in certain special cases interprets pα as the probability
of the history Qα even if no actual measurements are made. It is a way of assigning
probabilities to alternate views of the quantum state Ψ, corresponding to the possible
different sequences α = (α1, . . . , αn). Such an attitude is maintained only if a condition,
called consistency , or even a stronger condition called decoherence, is satisfied by the set
of alternative histories.
The notion of consistent histories forms the basis of a new interpretation of quantum

mechanics that in a certain sense transcends at the same time the Copenhagen inter-
pretation and the Everett many-worlds one. As such it has attracted the attention of
cosmologists. Its main feature that makes it attractive to the present case is that it does
not rely on the notion of measurement nor on the collapse of the wave-function. Thus
even though (1) can be interpreted as a sequence of evolutions and collapses, this is not
essential, and (2) can be viewed as merely a formula for a joint probability. In a more
generalized setting, the evolution-collapse picture is not even possible for some sets of
histories. This view of quantum mechanics thus transcends the notions of instantaneous
state, its evolution, and its collapse, which means that it is well suited for formulating
theories in which these notions are troublesome, such as non-linear quantum mechanics.
The most naive way to adapt the consistent histories approach to non-linear quantum

mechanics is to replace in (1) the linear projectors P (i)
j by non-linear operators B(i)

j and
so introduce the non-linear histories

BαΨ = B(n)
αn

· · ·B(j)
αj

· · ·B(2)
α2

B(1)
α1
Ψ,

with the corresponding probability function

bα = ||BαΨ||2.
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Such expressions are in fact the correct ones for a succession of measurements for the GDN
theories.
The most primitive property that the operators B should satisfy is that

∑
α bα = 1.

This is true in particular if one has
∑

j ||B(i)
j Φ||2 = 1 for every i and all Φ , which is the

case of GDN.
To complete the rest of the program and have an interpretation of this non-linear quan-

tum mechanics, similar to the consistent histories approach of linear quantum mechanics,
one needs to address the notions of consistency in the nonlinear context. There is no a
priori difficulty in formulating such a notion, though the stronger notion of decoherence
may not survive the passage to nonlinearity.
We shall not address the interpretational issues in this paper and only limit ourselves

to showing that one can pass on to non-linearity while maintaining Lorentz covariance.
Again, the most naive way to envisage Lorentz covariance is to assume that there is a
unitary representation U(g) of the Poincaré group along with an action φg of the same on
suitable non-linear operators such that it makes sense to talk of the transformed histories

B̃αΨ̃ = B̃(n)
αn

· · · B̃(j)
αj

· · · B̃(2)
α2

B̃(1)
α1
Ψ̃.

where B̃ = φg(B) and Ψ̃ = U(g)Ψ. Lorentz covariance would then be expressed through
the statement b̃α = bα. Such a scheme holds in the GDN case for Euclidean and Galileian
covariances.
Now it should not be very hard to implement the above scheme without further con-

straints, but for an interesting theory, one should require a locality condition that would
preclude superluminal signals. It would only be then that one could say that one has
overcome the relativistic objections to non-linear theories. This is the concern of the next
sections.

3 Free quantum fields

This section is based on the suggestion presented in [4]. Consider a free neutral scalar
relativistic quantum field. For each limited space-time region O, let A(O) be the von-
Neuman algebra of observables associated to O. Consider now a set of limited space-time
regions O1, . . .On which are so disposed that for any two, either all points of one are space-
like in relation to all points of the other, or they are time-like. Assume the regions are
numbered so that whenever one is in the time-like future of another, then the first one has
a greater index. Let Pi ∈ A(Oi) be orthogonal projections that correspond to outcomes
of measurements made in the corresponding regions. Let Ψ represent a Heisenberg state
in some reference frame and prior to all measurements. According to the usual rules, the
probability to obtain all the outcomes represented by the projections is: ||Pn · · ·P2P1Ψ||2.
We will modify this formula by replacing Pi by Bi, a possibly non-linear operator, likewise
somehow associated to the region Oi, whenever there is a region Oj that is time-like
past to the given one. This effectively differentiates between space-like and time-like
conditional probabilities. For this to be consistent, relativistic, and causal, the (in general
non-linear) operators Bi have to satisfy certain constraints. There are several ambiguities
in the above construction. The relative order of the Oi is not determined except for the
case of time-like separation. Presumably, the ambiguity of the order corresponds to the
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possible choices of the time-like reference direction. Even for some of these, two space-like
separated regions may not be separated by the time coordinate, in such cases we shall
suppose that the relative order does not matter. This means that we should allow certain
permutations of the sequence O1, . . . ,On and the choice of such a permutation must not
affect the final assignment of probabilities. We shall call each allowed permutation an
admissible sequence. There is also the ambiguity in the relation Pi ∈ Oi, resulting from
the inclusion A(O1) ⊂ A(O2) whenever O1 ⊂ O2. This too must not affect the final
assignment. The operators Bi can depend on several aspects of the construction. In
principle, each Bi can depend on the full set of constituents {Ψ, P1,O1, . . . , Pn,On} and
even, in a self-consistent manner, on the choices of the other Bj . Such generality leaves
little room for insight. Given that, we are trying to establish here a point of principle, that
non-linear relativistic quantum mechanics is possible, and not propose what would be a
realistic theory, we shall look for the simplest type of modification. For a typical datum
P ∈ A(O) in an admissible sequence, we shall at times write BO for the corresponding B.

1. If Oi and Oj are space-like separated, then

[Bi, Pj ] = [Pi, Bj ] = [Bi, Bj ] = 0 (3)

2. If O ⊂ O′ and P ∈ A(O) is a projector, then in any sequence in which P and O
take place for which changing O to O′ results in a new admissible sequence (with, of
course, identical spatial-temporal relation between the regions), one has BO′ = BO

3. If U(g) is a unitary operator representing the element g of the Poincaré group, then
BgO = U(g)BOU(g)∗

4. For all resolutions of identity Pj ∈ A(O) one has ∑ ||BjΦ||2 = ||Φ||2 for all states
Φ.

The bracket in (3) is a commutator, for example, [Bi, Pj ] = BiPj − PjBi and not the
Lie bracket of the two operators interpreted as vector fields on Hilbert space, which for
non-linear operators would be different.
We leave the problem of finding operators Bi to the next section and first discuss some

of the consequences.
Let us now pick in each space-time region Oi a finite resolution of the identity P

(i)
j ,

where j = 1, 2, . . . , ni with P
(i)
j ∈ A(Oi). We have

∑
j P

(i)
j = I.

Consider now the expression

pα = ||B(n)
α1

· · ·B(j)
αj

· · ·B(2)
α2

B(1)
α1
Ψ||2, (4)

where B
(i)
j = P

(i)
j if there is no region Ok to the time-like past of Oj and a possibly

different operator if there is. Expression (4) is to be interpreted as the joint probability
distribution of alternate histories as discussed in the previous section. From property (4)
it follows that

∑
α pα = 1 so that the interpretation as a joint probability is consistent.

Property (1) assures us that the mentioned ambiguity in the temporal order of space-like
separated regions does not affect the numerical values of the probabilities pα, but only the
way they are labeled. Property (3) assures us that the mentioned ambiguity in associating



266 G. Svetlichny

a region to a projector leaves the resulting probabilities the same. Finally, property (3)
assures us that if we replace the data

{Ψ, P1,O1, . . . , Pn, On}
by

{U(g)Ψ, U(g)P1U(g)∗, g(O1), . . . , U(g)PnU(g)∗, g(On)},
the resulting probabilities don’t change, that is, the theory is relativistically covariant. One
still does not know how to compute joint probabilities for events in regions that are neither
space-like nor time-like to each other, nor exactly how to interpret the formalism based
on the consistent histories approach. We leave this question for posterior investigation. In
any case, when only space-like separated regions occur in the histories, then the situation
is the same as in conventional quantum mechanics.
To show that joint probabilities as defined above do not lead to superluminal signals,

suppose one region O is space-like separated in relation to all the others. Then by the
considerations above, one can label the regions so that O = O1. The probability of
observing the event that corresponds to P

(1)
j is, if no other observations are made, given

by ||P (1)
j Ψ||2, and by condition (4) it is also ∑

α2,...,αn
pαn,...,α2,j that is, the marginal

probability if the other observations are made. This means that the probability of an
event is independent of what happens in space-like separated regions, and so no signals
using long-range correlations are possible, just as in the linear case.
One would thus have a non-linear relativistic quantum mechanics if conditions (1–4)

can be realized.

4 A simple explicit model

Free fields can be realized in appropriate Fock spaces. One has H =
⊕∞

n=0 Hn, where
H0 = C is the subspace spanned by the vacuum, and each Hn is the n-particle subspace.
We consider a free scalar field φ(x) of mass m. In configuration space, Hn now consists
of symmetric functions Φ(x1, . . . xn) of n space-time coordinates which obey a Klein-
Gordon equation in each space-time variable and contain only positive-frequency Fourier
components in each momentum variable.
A very simple way of satisfying (1–4) is to set in the time-like case B(i)

j = BP
(i)
j B−1,

where B is an invertible not-necessarily linear operator that is Poincaré invariant,
U(g)BU(g)∗ = B. In this case, it is easily seen that all the conditions are automati-
cally satisfied except possibly for the case of condition (1) which involves a modified and
a non-modified projector, that is,

[BPB−1, Q] = 0 (5)

if P and Q are orthogonal projectors belonging to space-like separated regions, and con-
dition (4) which would be satisfied if B were norm-preserving ||BΨ|| = ||Ψ||. If B is
a real homogeneous operator BrΨ = rBΨ for real r, then one can define a new opera-
tor (||Ψ||BΨ)/||Bψ|| which is now norm-preserving and continues to satisfy all the other
desired properties, so we shall not concern ourselves anymore with norm-preservation.
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A stronger condition than (5) would be to assume that

[BAB−1, C] = 0 (6)

if A and C are operators belonging to von-Neuman algebras of space-like separated regions.
Such a condition may seem somewhat strong given that B is supposed to be non-linear,
but one sees similar situations in the GDN theories, in which the non-linear operators
are in fact linear on spaces generated by functions with disjoint supports. In the GDN
theories such a property follows essentially from homogeneity and the local character of
differential operators. As such we can hope to achieve it in our case also. In particular,
one should have for smeared fields

[Bφ(f)B−1, φ(g)] = 0 (7)

for f and g with space-like separated supports.
We must now face the task of finding an appropriate B. Now it is not hard to

find Poincaré invariant non-linear operators. As an example, for each n, let Mn be a
permutation and Lorentz invariant non-linear differential operator acting on a function
g(x1, . . . , xn) of n space-time points. One can apply Mn to the n-particle component Φn

of a vector in a Fock space. Now MnΦn is not necessarily a positive-frequency solution
of the Klein-Gordon equation, but we can then convolute it with an appropriate Green’s
function. Define the operator C by (CΦ)n = ∆(+)⊗n � MnΦn where ∆(+)⊗n is the n-fold
tensor product of ∆(+)(x), the positive frequency invariant Green’s function for the Klein-
Gordon equation, and � denotes convolution. Much more elaborate operators in which
the various n-particle sectors get coupled can also be constructed.
The difficulty in (7) is of course the presence of B−1. We shall try to overcome this

by assuming that B is a part of a one-parameter group B(r) generated by a non-linear

operator K. Thus, the equation
d

dr
Φ(r) = KΦ(r) is solved by Φ(r) = B(r)Φ(0). We

assume B = B(1) and that (7) holds for each B(r). To the first order, one then has

[[K,φ(f)], φ(g)] = 0 (8)

for f and g with space-like separated supports. This equation imposes a recursive series
of constraints on the n-particle operators Kn for which, however, there are no formal
obstructions. We shall not here go into a full analysis of these constraints as the typical
situation already arises when we apply (8) to the vacuum state. We assume that the Kn

operators do not change the number of particles. One must have K0 = 0 as the vacuum
is the unique Lorentz invariant state. For a one particle function g(x), let g̃ = i∆(+) � g,
and let ⊗̂ denote the symmetric tensor product. One then derives from (8), applying
[[K,φ(f)], φ(g)] to the vacuum, that if f and g have space-like separate supports, then

K2f̃⊗̂g̃ = (K1f̃)⊗̂g̃ + f̃⊗̂(K1g̃), (9)
0 = (g,K1f̃) + (f,K1g̃), (10)

where (g, f) =
∫
g(x)f(x) dx. Now (9) defines K2 on the symmetric tensor product of two

functions in terms of K1. This is similar to the tensor derivation property for separating
non-linear Schrödinger equations [10]. We can thus assume that the hierarchy Kn is in
fact a tensor derivation with respect to the symmetric tensor product. Equation (10) must
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now hold for functions with space-like separated supports. This will hold, just as it does
in the linear free quantum field theory if K1 does not change the support of a function on
which it acts, which is not hard to achieve. The conclusion now is that in fact, at least
formally, a causal non-linear relativistic quantum mechanics of the type described in the
initial sections of this paper is possible.

5 Conclusions

The previous two sections have argued the logical point that, indeed, relativistic nonlin-
ear histories without superluminal signals are possible. Because of it’s ad hoc nature,
the model presented above cannot be considered realistic. In particular, if the space-
time regions involved constitute a time-like chain, then the joint probabilities in the non-
relativistic limit would not be of the type governed by a non-linear Schrödinger equation.
Thus, we have not yet shown that the GDN theories can be obtained as non-relativistic
limits. All the schemes based on non-linear histories which differentiate between space-like
and time-like joint-probabilities in principle should exhibit physical effects as one crosses
the light cone. Thus, in a typical photon correlation experiment, one can delay the light-
ray on one side so that at a certain point the detector events become time-like. In crossing
the light cone, an effect should be present that was not forseen by the linear theory. This
happens in the models above as ||PQΦ||2 suddenly becomes ||BQΦ||2. There are strong
plausibility arguments [4, 11] that theories that do not suffer such discontinuities at the
future light-cone are necessarily linear, so a true verification of non-linearity would involve
light-cone experiments. Theories of the type here considered are thus light cone singular
and, for such theories, the notion of non-relativistic limit has to be modified. Whereas in
usual theories the non-relativistic regime is one for which all relevant velocities are small
compared to the velocity of light, in light-cone singular theories one must add the require-
ment that all relevant space-time intervals be time-like. This further requirement removes
the paradox that a causal relativistic theory may have a non-relativistic limit that seems
manifestly acausal by allowing instantaneous signals through long-range correlations, and
may thus remove a major objection to formulation of non-linear quantum mechanics.
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