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INTRODUCTION

The rigour of the requirements to the geometry of the ring accelerator position
is well-known. They tier in the necessity to take account of the error harmonic
set. The point is, that the separate harmonic components of the magnet position
errors have different effect on the machine operation. It follows from the solution
of the equation for the disturbed particle motion in the closed orbit. This solution
for the strong focusing accelerator with an error not more than 30% can be written

as follows [1]:
Rg N/2 /a
Y; = —— Z ——(——-—l!‘— cos[k©; — Q(AH/H);] (1)

where 8Y; is the particles orbit distortion in the centre of the quadrupole mag-
net under number i;

R and Ry are the mean orbit radius and orbit radius in the magnets;

G(an/nm), and Q(an/m), are the amplitude and phase of the harmonic of k order
of the expansion into the Fourier series of the relative disturbances of the magnet
field;

v is beam betatron frequency;

N is the quadrupole capacity;

© is the azimuth coordinate.

The relative disturbances of the magnet field are related to magnet position
errors in the following equations:
AHpg AR-Gr AHz AZ-Gr

H -t H ' H T H® ' @)

where Gr - the magnet field gradient;
AR - the radial position errors;
AZ - the vertical position errors.

The upper sign in the formulae (2) concerns F quadrupoles, the lower sign
concerns D quadrupoles.
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As it follows from expression (1), the disturbance harmonics, the nearest to
betatron frequency, give rise to the biggest orbit distortion. Therefore, the corre-
sponding harmonics of the magnet alignment errors should be considered specially.
But the conventional methods do not allow to extract the dangerous harmonics
from the alignment error population.

1. The basis for the spectral method.

As a rule, for big accelerator alignment the precision ring geodesic networks
are used. They have a polygon form. The measuring elements of network can
be distances between the neighboring points and the offsets or angles. The point
capacity usually coincides with quadrupole capacity, and the distance values cor-
respond to value of the distances between the quadrupoles. Since our problem is
of an estimation character, let us take this polygon as regular. We take account
too of the following characteristic properties of the accelerator alignment:

1. The requirements to the magnet precise position are given in polar coordi-
nate system.

2. The alignment errors in lateral to beam axis directions are the most critical.

3. The regular position of geodetic points in circumference, the design and use
similarity without separating some of them starting requires to consider the
ring network as free geodetic system.

The basis for the spectral method is the set of n equations (n is the points
capacity), which connect the errors of the measuring values Ah (or AB) and As
with the errors of the radial coordinates of the network points AR (see fig.1):

AR; 1 — 2AR;cosp + ARy = Lpg, ; 3)
where for measured h and s
Lg, = —2|Ah; — sin %(As.- + Asi)) (4)
for measured # and s
Lp, = —:;s cos% - A + sin %(As,- + Asiy) (5)

where g - radian with units of AS.

The coefficient matrix of the equation set (3) has the dependent columns.
Therefore the unknowns AR can be determined by the certain conditions, namely,
by absence of the displacement of the system weight centre, that is condition for
free geodetic network. The solution of the set (3) is founded on the expansion of
the AR and Lg values into closed Fourier series. It can be realized by the known
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Fig. 1 The scheme of the ring geodetic network
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formulae for expansion into trigonometrical series of the n values X, which are
regularly arranged in the period [2]:

X,' = Z’-: Gh . COS(ke,' —_ Qk) N (6)

k=0

where r =2 at even r,r = 221 at not even. m,
G is an amplitude of harmonic under order k;

Gr=4/A} + B} ; )

Q. is a phase of harmonic under order k;

B,
Qp = arctg (:4:) ; (8)

Ay , By axe trigonometrical coefficients,

1 2 n 2 n
Ag = — Xi ; ; = — i3 = i ;
0 nz i Bﬂ:O,Ak ni:Zngcoske. 5 B&——;&Xismkei ; (9)
k=1,2,3,.... 2" at not even n,
k=1,2,3,..,2 — 1 at even n.
With the even n the coefficient values of last harmonic under order n/2 are
calculated by formulae:

1 & )
An=130% 5 Baa=o, (10
i=1

We will further consider the ring network with the even capacity of points.
Suppose that the AR and Lg values are periodic functions of the azimuthal angle
© with period of 2r and expand these functions into closed trigonometrical series:

AR =" Gg, cos(k©; — Qp,) , (11)
k=0

Lg, =) gr, cos(k©; — WwRr,) - (12)
k=0

Using the expressions (11), (12), we can write the equation (3) as

kz Gh, - [cos(k©;_; — QR,) — 2cos ¢ - cos(k©; — Qg,) + cos(k©;y; — Qg )] =
=0

,
Z gR, cos(k©; — wr,)

k=0
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The both sides of the derived equality contain the series. It is known, that the

equality is possible if the series are term-by-term equal. That is, the expression is
correct:

Gg, - co8(k©;_1 — Qg,) — 2cos ¢ - cos(kO; — Qg,) + cos(k©;yy — Qr,) = (13)
= gg, cos(kO; — wg, )

Taking into account that
k©;_ 1 = kO; — ko ,kOi =kO; +ky (14)
from (13) it follows that:

2 - Gp, - cos(kyp — cos p) - co8(kO; — Qg,) = gr, co8(kO; — wr,) (15)

We have equality of two harmonic waves, which have the similar frequencies
and directions. In this case their amplitudes and phases are equal too, that is

2-Gp, - cos(kyp — cosp) = gg, , (16)
Qgr, =W, , (17)
If to label .
= 18
B = 2 cos(ky — cos ) (18)
80

Gr, = CR,,QR,, . (19)

Expression (19) allows to correspond the harmonic amplitudes of the measure-
ment error functions to the errors of the radial position of the network points.
Note, that because of indeterminate form of the initial equation set the coefficient
Cr,, which can be called as "coefficient of the harmonic amplification", at k=1
is indeterminate. It can be explained by the conditions for the free geodetic net-
work: the first harmonic of the radial errors causes the parallel displacement of
the network points relative to its weight centre.

2. Some distinctions of the estimate of the measurement
error harmonic set.

Let us investigate the correlation matrix of the vector of the trigonometrical
coefficients
[ Ao )

Ay
A,
By !
By

\ B, |
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which is linear function of the some measurement vector

I=M-J (20)

The measurement errors are random values, which are characterized by corre-
lation matrix

where m is r.m.s. of the measurement.
As it follows from expressions (9-10), the matrix of linear transformation in
the equation (20) has following form:

1 1 1
/ 2 2 2 \
cos ©; cos Oy ... cos B,
c0820, cos28; ... cos20,
2 cosT©y cosrO; ... cosrO,
M= - 0 0 0 (21)
sin 61 sin 92 ... sin 8,,
sin 261 sin 292 ... sin 29,.
\ sinr®; sinrO; ... sinrd, )

Let us define the form of the correlation matrix K for vector of trigonometrical
coefficients:
Ki=M-K; MT | (22)

where MT is transposed matrix M.
The matrix Ky has dimension (2r + 1) * (27 + 1).
The following equations hold for points, regular placed in the circumference:

ZCOSICG{ =Zsmk6; =0 s

i=]1 i=1

Zcoske.wsinj(-); =Zcosk6;-cosj9, =Zsink6;-sinj6,~ =0,

i=1 i=1 i=1
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fk#jand k+j < n,

n
Y cos’kO; =) nsin® k6; =

k=1 k=1

2|3

Subject to these equations the matrix Ky will have form:

2
=00 0
0o = o 0
Ki={ 0 o0 m™ 0 (23)
0 0 0 ... 0

From the derived matrix the following conclusions can be done:

1. The diagonal terms, which characterize error variances of the trigonometrical

coefficients at k=1, 2, 3,....;—'-1are equal each other:
2
m
2 _ .2 —_ . 2 .2 -0 -
Mgy =Ma,, = mBo—mBn/z—O,
2m?
2 _n2 z .
my =mp = mall (24)

2. expressions (24) define error variances for trigonometrical coefficients of the
measurement value errors: offsets, angles, distances, elevations.

3. all not diagonal terms are equal to zero. Consequently, the errors of the
trigonometrical coefficients are not correlated to each other.

Differentiating (7), we get:
dGj = dAs cos Qi 4+ dBy 8in Q) .
Using absence of correlation, let us go to r.m.s. values:
mg, = my, cos’ e + mjp, sin’ Qy, .
Or, subject to (24),
mg, = mMma, = Mp, =Yk (25)

Correspondingly Yo = M4, i Yn/2 = MA, -
Let us substitute in the formula, similar (7), for Ax and By terms their r.m.s.
values. We will get:

Fk = \/mix + szL *

Subject to (25) we will have:

Ti=mg, - V2=% V2. (26)
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Considering the sense of formula (7), one may say, that we have got the r.m.s.
amplitude of the k-th harmonic.

If v characterizes the error part of each value X;, due to error harmonic of
k, that Ty characterizes the r.m.s. amplitude of this harmonic. For harmonics of
k = 0 and k = n% we will have:

To=mg, =Y

Loz =ma,;; = Yns2 - (27)

3. The harmonic set estimation of the ring network geodetic
points radial position errors.

Let us consider the geometrical conditions in the ring network. By analogy
with known level method we have here three conditions too:

Gho — Gso -8INE =0 or g5 =0,
aﬂ1=0; (28)
bg, =0,

where 9ho 95 , gg, are amplitudes of the zero harmonics of the Ah,As, AfS;
aR,,br, are trigonometrical coefficients of the first harmonic of LR; values.

The methodology of level and its final results will not be considered here.
But from condition equation set (28) one can see, that by level only zero and
first harmonics of the measured values will have got corrections. The rest error
harmonics of measured values at the final of level are not corrected and all go into
the error harmonics of the point position.

To estimate the r.m.s. amplitudes of harmonics of k=0, 2,3,4,...,n/2
orders let us use the outcome from expression (19):

Apg, =Cpg, rap, ; Bpg, = Chr, ‘bR;. . (29)

using (7), (12), let us write in more detailed form one of the equations (29), for
example, the first one:

n n

ApB; cos kB; + sin —2(6 Z(As,— + Asiy1) cos k6,
1

i=1

2 1 7
A = —( —g . _—
R, R, [ 8+ CO8 )

=
The formula set (14) allows to get easily the expression of following form:
2 1 7 i . P "

Ap, = ;CR,. ;3 cos o E Apf;cos kS; + sin 5(1 + cosky) ) _ As; cos k6;+

+sin gsin kaAe; sin kei] .

i=1
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Or, that is equivalently,

1
Ag, =Chg, {;s - oS —:iap,. + sin ;;e(l + cos k) - a,, +sin%sin ke - b,h} .
Here coefficient Ag, is the linear function of the trigonometrical coefficients

@ps> a,, and b,, of the expansion into the series of the measured value errors,
namely of angles and distances. Using the absence of the correlation between the

coefficient errors one can easily enough come to r.m.s. values:
A = C% ls’-c:ozs""-"‘i'yz +sin2—‘e(1+cosk )2 42 +sin? £ sin? kg - 47
YR, = “R, o 2 1B 2 4 o 2 sm” ke -, | -

Substituting for g, and 7, the equivalent values, defined by (24, 25), taking into
account (26), we will have for the case of angles and distances measurement:

2 1 4 . 2 ¥
= . —_ .82, 2 . m? 2 - m2
Ir, = 7 C’Rh\/ 67 cos? o mp + 2sin 5 (1 + coskyp) - m? (30)

Doing the similar operation, we will have for the case of offset and distances
measurement:

4

hzﬁ'

For harmonics of k =0 and k = n/2 orders the ', values are \/5 as low.

T CR,.\/mﬁ + 2sin? —(g(l + cosky) - m? (31)

4. The harmonic set estimation of the vertical position er-
rors,

To estimate the harmonic set of the vertical position errors we will use the
same supposition.
Assume that: n is the number of geodetic points in the network;
¢ is the current point number.
The equations connecting the measured elevations z with altitudes Z have the
following form:
Z,‘ — Zg__l =2 .

Differentiating, we will have the n equations of the form:
AZ;— AZi 1= Az . (32)

Suppose that AZ and Az values are periodic functions of the azimuthal angle
© with period of 2 and expand these functions into closed trigonometrical series:

AZ,' = Z sz COS(ke,' - sz) 3 (33)
k=0
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Azi = g, co8(k€; —wz,), (34)
k=0

where GZ,,’gszme,,. are defined by formulae (7-10), where AZ and Az
values substituted for X.

Using (33), (34), let write the initial equations (32) as

Z Gz, [cos(k©; — Nz, ) cos(kO;_; — Nz, )] = Z gz, - cos(kOi — w,,)
k=0 =0

As the series equality is possible only by the each-by-each equality of their terms,
that, taking account of (14), after easy trigonometrical transformations we will
have:

k k
2.-Ggz, sin —;cos(kei - Qgz, — —;— - -12[) = g., -cos(k©; —w,,) .
As earlier we have equality of the two harmonic waves with the same frequencies

and directions. Consequently their amplitude and phase are equal, that is:
k
2-Gz,.sin7(p =g, -

From here
GZ,, = Cz; * Gz, (35)

where 1
Cz. = 2.sin %2
Note, that coefficient of the harmonic amplification for zero harmonic is indeter-
minate. This is the result of the indeterminate form of the initial equation set
(32). But in this case failure to take into account the zero harmonic AZ reduces
network without any deformations to the mean horizontal plane.

The r.m.s. value of the elevation measurement error m characterizes the ran-
dom values, which are not correlated. Using it with help of expressions (24-26) one
can go to r .m.s amplitudes of expansions of these values into closed trigonometrical
series. As result we will have:

(36)

2m,
Fz;. — \/5 ,

2m
I‘zn/i = -—ﬁ

Using now the equation (35), after the transfer to r.m.s. values we will get
r.m.s. amplitudes of the vertical point position errors:

2m,

Pz, =Cz Ts = 72Cz,

37
Tz,,=22Cs, . (37)
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5. The estimation of the results.

With the final formulae (31, 37) the r.m.s. amplitudes for radial position errors
of the network points of the operating Serpukhov accelerator with network radius
of 236 m were calculated. The network includes 60 points. The measurement pre-
cision is characterized by following values in r.m.s: offset mp = 0.04mm, distances
m, = 0.2mm, elevations m, = 0.05mm. From resulting Table 1 we can see, that
the measurement errors will have the main effect on the amplitude amplification of
error harmonics of lower orders. It is explained by high values of coefficients of the
harmonic amplification Cg,. With the rise of harmonic order the error harmonic
amplitudes quickly reduce.

Table 1.
The r.m.s. amplitudes for the radial position errors
of the ring network points at Serpukhov accelerator.

Harmonic | Cg, | Tg, || Harmonic | Chg,
orders pem | orders

0] 913 1064 11| 08

21305 | 711 12 | 0.7

3115 | 267 13] 0.6

4| 6.2 | 143 14} 0.6

5( 3.9 91 151 0.5

6( 27| 62 16 | 04

71 20 45 17 04

8 15 35 18 04

9| 1.2 28 19| 04

101 1.0 23 20 03

Table 2.

The r.m.s. amplitudes for the vertical position errors
of the ring network points at Serpukhov accelerator.

Harmonic | Cg, | T'r, || Harmonic | Cg, | T'g, || Harmonic | Cg, Tr, 1
orders pem orders pem orders uem |
0] 96| 123 11| 0.9 12 21| 0.6 (3

27 4.8 62 12| 0.8 11 221 0.6 7

31 3.2 41 13| 0.8 10 23| 0.5 7

41! 24 31 141 08 10 24 { 0.5 7

b 1.9 25 15 0.7 9 26} 0.5 7

6| 16 21 16 0.7 9 26| 05 7

71 14 18 17| 0.6 8 27( 0.5 7

81 1.3 16 18 0.6 8 281 0.5 (]

9 11 14 19 0.6 8 20 0.5 ]

10 1.0 13 20 0.6 7 30| 0.5 3
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For example the comparatively high amplitude of second harmonic points to
the fact that as result of measurement errors the network points will displace into
the smooth elliptic curve with minor deviation from ones due to the harmonics of
the higher orders.

The similar effect is observed for vertical position of points (Table 2). But
in this case the amplitude reduction is more smoothed. Due to correlation the
network points take up the error position in the sufficiently smoothed curves,
defined by error harmonics of the low orders. For example, the first harmonic sets
off the comparatively small inclination of orbit by angle:

I'z
all — lpll.

R

In the showed example at the radius of R = 230 m,a=0.1".

CONCLUSION

The derived results confirm the very important property of ring networks:
the measurement errors cause the smooth deformation of the initial form. From
this deformation one can sufficiently easily extract and estimate the dangerous
harmonics. The absence of correlation among the error harmonic components
allows to use ones for the further method development: the definition of the other
precise characteristic of network, the estimation of the orbit distortion due to
alignment errors and so on.
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