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Summary

The Poisson Alignment Reference (PAR) system was developed in response
to the need for a highly accurate linear reference that could operate as an
element in a “real time” alignment feedback loop. The system will (or at least
is expected to) provide transverse positional data on approximately 60 targets
distributed over 300 m, with an accuracy of better than 25 µm. The PAR
system employs a large diameter (46-cm-diam for 60 targets) collimated laser
beam. The beam must be propagated in a vacuum, to avoid refractive bending.
The stability of the beam is guaranteed via a high bandwidth feedback loop,
that maintains beam pointing within 5 µm over 300 m. Resolution of target
position within the large laser beam is achieved by employing the Poisson spot
formed in the shadow of spheres (the targets) in the beam. The Poisson spot
from a 2.5-cm-diameter sphere in a HeNe beam is approximately 8-mm in
diameter at 300 m, and its center can be resolved to about 2-3 pm using a
photo-electric quadrant detector. Much of the advantage of this system resides
in the fact that the targets can remain in place at all times, there are no
radiation sensitive detectors employed along the alignment axis, and the targets
are extremely simple. This paper describes, in some detail, the mathematical
modeling of the refractive effects common to all optical alignment systems. The
paper continues to describes the Poisson spot and the conceptual design for
employing the PAR system in accelerator and free electron laser (wiggler)
alignment.
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Propagating a Laser Beam

Refractive Effects and noting that n + 1 G 2:

The principal feature of an alignment system
is a straight line reference, or SLR. It would be
inconceivable to make a mechanical SLR to the
tolerances needed for an FEL. Lasers form what
is generally considered a straight line, but as is
shown in Eq. (6), this is not true in air. The beam
will bend in the atmosphere from changes in the
refractive index. The refractive index is sensi-
tive to both temperature and pressure variations.
Some perspective on the atmospheric bending
effect on light is provided in Ref. 5. If one were
to use the SLAC approach, a deviation from a
straight line path can be calculated from the
following considerations: if only deviations in
the vertical direction are considered, the
refractive index can be written as

n(y) = n&l - Ey) I (3)

where n(y) is the index of refraction as a function
of the vertical position y and n,~  is the gradient
in the vertical direction. The vector form of the
differential equation of a light ray is

dlds  (n drlds) = grad n , (4)

where r = jy + kz; j and k are the unit vectors in
the y and z directions, respectively; and s is the
distance along the ray. To a very good
approximation, s = z; thus Eq. (4) can be reduced
to

d/dz (n dy/dz)  = -n,E . (5)

(9)

At standard temperature and pressure (298 K and
760 Torr), n - 1 = 3 X 10-4; thus 3A/G!R)  is equal to
1.2 x 10-4  K/Torr. Pressure and temperature can
be expressed as a function of y, to the first order,
as

p(y) = po + (dp/dy)y = po + p’ y t (10)

and

T(y) = To + (dT/dy)y = To + T’ y . (11)

If the ratio p(y)/T(yl  is expanded in a Taylor
series about y. = 0, then

p(y)/T(y) = PO/TO  + Pw-0 -PoT’Yd

+ (higher order terms) , (12)

where p. and To are the nominal pressure and
temperature in the line of sight at yo. Now
substituting for n,

n(y) = no - Ey (13)

yields

For a paraxial ray starting on the axis, where
n = no, the solution to Eq. (5) is Aty=O,

y=-Ez*/2 . (6) no-1=~=l.2xl~p,/To  ;

The problem is to find E, which can be derived by
starting with the Lorentz-Lorentz formula5,15:

A = CRT/p) (n* - 1)/3 , (7)

where A is the molar refractivity, R is the gas
constant, T is the temperature, and p is the
pressure. Equation (7) can be rearranged as

3A pn-l =
[RT(n  + 111 ’ (8)

thus

noe=1.2x1@K/Torr (16)

The value of n, is 1.0003 and the pressure and
temperature (p. and To 1 are in Torr and Kelvin.
The pressure gradient, p’, is -1.15 x l@ p,/m (for
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air) and is generally a minor contributor to re-
fractive bending. However, a temperature gra-
dient as small as 1 K/m would bend the beam
4.5 mm over a 300-m path. To keep the refrac-
tive bending from the temperature gradient (T3
at tolerable levels, the pressure (po) should be
below 10-3 Torr. The maximum allowable pres-
sure in the propagation path depends on the
allowable uncertainty in the straightness of the
laser beam, the length of the path, and how
well temperature gradients can be controlled.

Divergence

If a Gaussian laser beam is used as an align-
ment reference, the ability to resolve the loca-
tion of the beam is proportional to the beam ra-
dius. However, due to divergence, the beam
radius increases with propagation distance. To
keep the beam radius minimized over the entire
propagation path, it is necessary to focus the
beam to a waist at the midpoint. The equation
for the beam waist, w,, for a given beam radius,
w(z), isl6

* w* +[w4-(+yp.5

w. = 2 I (17)

where z is the distance between the waist and
the observation plane. If a 5-mm radius beam is
required at a distance of 150 m (one half the to-
tal propagation distance), then there is no real
solution for w, (assuming h = 488 or 632 nm).
Therefore, a Gaussian beam is less suitable for
the SLR than the Poisson line.

The Poisson Line

The key element of any alignment scheme is
the SLR5,10,13,14 The Poisson line is one method
of generating this line by diffraction. When an
opaque sphere is illuminated by a plane wave,
as shown in Fig. 2, a diffraction pattern that has
the following characteristics is formed behind
the sphere:

l There is a line of light, the Poisson line,
generated behind the sphere. This line is per-
pendicular to the incident plane wave and, if
extended backwards, passes through the center
of the sphere.

Figure 2 A sphere illuminated by a laser will
produce a line of light (the Poisson line) in the
shadow of the sphere. The intersection of the
Poisson line with an observation plane identifies
the sphere location relative to the laser beam or
other spheres in the beam.

l The intensity of the line increases asymp-
totically to the incident intensity as distance
from the sphere increases.

l The diameter of the line decreases as the
diameter of the sphere increases.

l The diameter of the line increases for in-
creasing distances from the sphere; however, the
diameter of the line over any distance behind
the sphere can always be kept smaller than a
Gaussian beam propagating over the same
distance.

The diffraction pattern can be observed by
placing an observation screen or camera perpen-
dicular to the Poisson line at any plane behind
the sphere. Typical diffraction patterns are
shown in Figs. 3(a) and (b). These photographs
were taken with a Graflex camera that allows
the light to be directly imposed on the film. The
diffraction pattern was formed by a 12.7-mm-
radius sphere, which was 50 m from the
observation plane in Fig. 3(a) and 100 m from the
observation plane in Fig. 3(b). The bright area
around the shadow of the sphere is part of the
150-mm-diam incident laser beam. The central
bright area in the shadow is the Poisson spot,
which is the intersection of the Poisson line and
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Figure 3. These photos show the Poisson spot from a 25-mm-diam sphere in
an observation plane at (a) 50 m and (b) 100 m. The associated plots are the
calculated intensity profiles out to the edge of the shadow.
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the observation plane. The intensity, I, of the
diffraction pattern is given by17

I(s) = 1 - ~(xu)O.~  (S1 sin a + S2 cos a)

f 47Ms;  + s$ , (18)

where s is the radial distance from the center of
the Poisson spot, S1 and S2 are summations of
Bessel functions given by

S1 = c (4n + 1) C-1)”  12n+1/2  (u/2> h+l(v)/v, (19)
?I=0

and

!$J = i(h + 3) (-lJn+l  J2n+3/2 (u/2)  hn+3(~)/7  I

(20)

where

u = hll*/2z , (21)
v = ksa/z , (22)
a=ks2/2z+u/2. (23)

In Eqs. (18)-(23) a is the radius of the sphere, h is
the laser wavelength, and k is the propagation
number 27r/h.  Figures 4(a) and (b) show the cal-
culated intensity, Ifs), for the Poisson spot of a
6.35-mm-diam sphere 26.5 m from the observa-
tion plane and of a 25.4-mm-diam sphere 300 m
from the observation plane, respectively.

The Poisson line generated as described
above only passes through one fixed point, the
center of the sphere. To serve as a reference line,
the Poisson line must be constrained to pass
through a second fixed point. The center of a
quad-cell (quadrant detector) serves as the sec-
ond fixed point. By centering the Poisson spot on
the quad-cell, using a feedback circuit between
the quad-cell and a mirror that actively steers
the incident plane wave, one forms the Poisson
reference line, which is ostensibly as stable as
the two fixed points.

Since there is a significant amount of energy
in the rings around the bright central spot, an
aperture over the quad-cell should be sized to
match the first dark ring. The quad-cell deter-
mines the location of the mean of the energy in
the Poisson spot relative to the center. Let A, B,
C, and D represent the sum of the energy in each

Figure 4. A 635-mm sphere (a) was used in a
26.5-m test to simulate the effects of a 25.4-mm
sphere (b) 300 m from the observation plane.

quadrant; then the offset from center can be
expressed as

6x = K[(A + D) - (B + 01 (24)

and

Sy = K[(A + B) - (C + D>l . (25)

where A, B, C, and D are the currents from each
quadrant, as illustrated:
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K is a proportionality constant to convert the
quad-cell current output to a linear dimension.
Figure 5 is a calibration curve that shows that K
is quite linear through a region near the center.
Although quad-cells can be used for measuring
offsets, they are generally better as nulling or
centering devices. The curve eventually changes
direction because the quad-cell has been moved
more than the width of the first dark ring. This
causes part of the central bright spot to be
masked by the aperture, while on the opposite
side of the quad-cell, energy is starting to be
added by the first bright ring. It is also impor-
tant to note that quad-cell output indicates loca-
tion of the mean of the energy. From a computa-
tional standpoint, it is important to distinguish
the location of the mean of the energy from the
centroid of the energy.

There are major advantages to placing sev-
eral spheres in a very large diameter beam si-
multaneously, as discussed in the next section.
When there are two (or more) spheres in the col-
limated laser beam, there is some degree of mu-
tual influence of one sphere on the diffraction
pattern of an adjacent sphere. The symmetry of
the diffraction pattern is altered, causing a shift
of the center of energy of the Poisson spot.
Figure 6 illustrates the pertinent dimensions in
calculating the offset of a Poisson spot as a result

of diffraction from an ad’ cent sphere. The
intensity at a point P is17

+4XU&  +s;,) +4XU& (26)

The arguments of this function are defined in
Eqs. (27)-(32), where i = 1,2 identifies the
sphere.

Qi = kSf/2Z + Ui/2 , (27)

x I4n+l($/R  I (28)

x 14n+3(%)/%  I

Figure 5. Quad-cell calibration curves are influenced by beam
intensity and might be distorted by stray light.

(29)

(30)
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z E Distances from spheres to
observation plane

P = Point in the observation plane

3, s2 z Radial distance from the Center of
the Poisson spots to the point p

Figure 6. Diffraction from two adjacent
spheres will interact. The separation of the
spheres (d) must be about 25 mm edge-to-edge to
assure an acceptably small shift in Poisson spot
in the observation plane. Z is the distance from
the spheres to the observation plane; P is a point
in the observation plane; and sl and s2 are
radial distances from the center of the Poisson
spots to the point P.

vi = ksiai/z  , (31)

and, as before,

k=2x/h. (32)

In Eqs. (26)-(32), ai is the radius of the sphere i,
z is the propagation length between the spheres
and the observation plane, and A is the laser
wavelength. Techniques for solving the
fractional-order Bessel functions can be found in
Handbook of Mathematical Functions.18 T h e
value of s2 is easily found from the cosine law

s2 = (s; + d2 - 2d s1 COS.~)~-~  , (33)

where sr and 8 are the coordinates of the point P.
Point P is the spot in the observation plane
where the intensity is being calculated. Dis-
tance d is the center-to-center separation
between the spheres.

Figure 7 shows the experimentally deter-
mined shift of a Poisson spot, from a stationary
6.35-mm-diam sphere, as a matching sphere
moves toward it. The abscissa shows the center-
to-center displacement of the spheres, and the
ordinate shows the displacement of the mid-
point of the energy distribution of the Poisson
spot from the stationary sphere. The moving
sphere is aligned such that its axis of motion
will cause it to overlap the stationary sphere.
The quad-cell that is monitoring the Poisson spot

Distance  between  sphere centers, d

Figure 7. The center of a Poisson spot will move in an oscillatory manner
as another sphere is moved toward the sphere creating the Poisson spot.
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of the stationary sphere is on a calibrated stage
that moves parallel to the moving sphere.

Two spheres were placed on the inlet
window of the vacuum pipe as shown in the
experimental setup (Fig. 8). A third sphere was
attached to a ring on a calibrated stage. This
third sphere, or probe sphere, could be moved
vertically past a stationary sphere on the inlet
window. The Poisson spot of the stationary
sphere was centered on a quad-cell at the far end
of the vacuum pipe, 26.5 m away. As the moving
sphere was moved toward, over, and beyond the
stationary sphere, the quad-cell was moved to
keep the Poisson spot centered. Figure 7 shows
the necessary displacement of the quad-cell as a
function of sphere separation. The diffraction
rings from the moving sphere have little effect
on the stationary (measurement) sphere when
the center-to-center separation is greater than
about 20 mm.

The control sphere on the inlet window cre-
ated a Poisson spot on a quad-cell in the closed-
loop control system. This sphere was placed far
enough away from the probe sphere that the two
Poisson spots would not significantly interact.

The FEL might require a 300-m SLR. Calcu-
lations based on the equations above show that,
at 300 m, 25-mm-diam spheres separated by

50 mm would produce no more than 10 urn of
disturbance (error) in the Poisson spot of an
adjacent sphere.

In the experimental setup to verify Eq. (26),
it would have been possible to support the
spheres on a glass plate perpendicular to the
laser beam. However, in an FEL, there might be
sufficiently high radiation levels to darken the
glass; therefore, the spheres were supported on
thin (25 or 50 pm), taut wires. Figures 9(a) and
(b) show the effects of moving a 25-urn and a
50-pm wire past a 6.35-mm sphere. Note that if
the wire is more than about 10 mm from the edge
of the sphere, the wire’s movement has a rea-
sonably small influence on the apparent position
of the sphere’s Poisson spot. More important,
once the wire moved between the edges of the
sphere, the wire effects were less than 5 pm for
any of the wires we tested.

There are a number of ways to attach the
spheres to the wire. Holes of 250 pm have been
electron-discharge machined into the spheres,
and the wires have been laser welded into the
holes. This technique has the advantage that
there is no cantilevered load on the wire, but the
machining and laser welding are expensive. An-
other method that has worked well is to
machine-off two parallel flat surfaces (as in
Fig. 21). Now, the wires can be contact welded

Figure 8. Experimental setup to measure diffraction interference effects.
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Figure 9. The alignment fiducials (spheres) can be supported on wires. Diffraction from wires of
adjacent spheres will cause the Poisson spot of a given sphere to move in an oscillatory manner, as
indicated by moving a wire past a 6.35-mm sphere and observing the movement of the Poisson spot at
26.5 m; (a) 25-pm  wire and (b) SO-pm wire.

into place on one of the flat surfaces. Although
there is clearly some movement on the wires, it
has not resulted in vibrations that could be
sensed on the quad-cells. Using a section of a

sphere rather than a disk eliminates the need
for tight tolerances on the pitch and yaw of the
target support.

The Alignment Concept

To develop an understanding of how the
Poisson spots can be used to align something, con-
sider the following simplified case. Imagine
that we want to align five magnets. For the mo-
ment, assume that we know exactly where the
magnets are relative to a sphere that is at-
tached to a perfectly transparent support. The
laser beam and Poisson line in Fig. 10(a) will be
the reference axis for the five magnets. The ref-
erence sphere and the center of the detector are
the two fixed points necessary to define a
straight line. Note that the laser beam can be
translated in x and y, but not tilted, without
changing the location of the Poisson spot on the
detector. The fact that the laser beam can be
translated emphasizes that the reference sphere
and the quad-cell position detector are defining
the line. By removing the reference sphere, we
begin the alignment process by placing the
sphere associated with the first magnet in the
beam. As this sphere is moved up, down, and
sideways in the beam, the Poisson spot it pro-
duces in the observation plane can be centered on
the detector. The attachment of the sphere to

the magnet must assure that the two move in
unison and that there is no pitch or roll. Now, by
holding the first magnet in place and removing
the sphere, the next magnet [Fig. 10] can be
aligned by placing its sphere in the beam and
moving it until the Poisson spot it produces is
centered on the detector. This process can be
repeated until all five magnets are aligned.

What would happen, in the example above,
if the laser beam started to drift, i.e., tilt, during
the alignment process? Typical alignment lasers
have stability specifications of 10-5 of 10     -4

rad/hr. The reference sphere would have to be
reinserted to detect the problem. The alignment
of some of the magnets would have to be
rechecked to assure that they were not aligned
while the beam was tilted, or alternatively the
reference sphere could be inserted before and af-
ter each magnet was aligned. Only a small part
(say 10 urn) of the total alignment budget can be
allocated to beam pointing in an FEL alignment
system. A l@un laser pointing error would occur
every 12 s (at 300 m) if the beam drifted at a lin-
ear rate of 1O-s  rad/hr. However, laser drift can
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Figure 10. Magnets can be aligned by aligning the spherical fiducials,
which are much more readily identified than magnetic centerlines;
(a) establish a reference line and (b) move magnets so their fiducials
fall on the reference line.

be more than adequately controlled with a
closed loop feedback system if the reference
sphere can be left in place.

Simultaneous alignment of many points in
the FEL and continuous monitoring of beam
pointing are essential because of ground motions
and vibrations. Ground motion can be expected in
response to a changing water table, post
construction settling, nearby construction, and
ground faults. Vibrations cover a frequency spec-
trum from thousandths of Hertz to thousands of
Hertz. Earth tides, with a period of 94 min, are
as much as 300 mm in amplitude19 but the long
wavelength results in negligible bending over
the length of an FEL. Settling of the building
and seismic activity are of much greater concern.
The SLAC has been observed to move several

millimeters each year, and typical construction
practices indicate an expected settling of as much
as 50 mm/yr. Even if this settling occurred lin-
early in time, the FEL would need to be realigned
every 2-4 hrs. However, the difficulties that
ground motion introduces for alignment are over-
whelmed by the transient effects of internal
heating during operation of the FEL. Internal
heating is expected to necessitate realignment of
the entire FEL every 10 seconds.

The alignment laser is particularly sensitive
to vibrations since its pointing needs to be con-
trolled to about 20 nrad. The laser and coilima-
tor should be mounted on a table with a high
level of internal damping. The collimator
pointing system will actively damp vibrations
below about 300 Hz (bandwidths over 1000 Hz
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should be possible). The high bandwidth of the
active control loop is largely due to the low mo-
ment of inertia of the beam-directing mirror,
schematically illustrated in Fig. 11. Fractional
gain in the pointing resolution of the piezoelcc-
trically driven mirror mount is achieved by ad-
justing the separation between the mirror and
the pin hole. If the resolution of the mirror
mount is 8,, then the beam pointing resolution for
small angles is20

0, = 2&?l/f  I (34)

where L is the distance from the pin hole to the
mirror and f is the focal length of the
collimating lens.

The reference sphere is to be kept in place at
all times with a large-diameter laser beam.
With some ingenuity, the spheres associated
with ail the magnets could also be in the beam
simultaneously. Leaving the spheres in place
would eliminate several problems including, but
not limited to, the repositioning error for the
target inserter, high cost and poor reliability of
the sphere insertion and retraction mechanism,
and the low speed with which the magnets could
be aligned or checked for alignment.

The reference sphere and all the other
spheres can be in a single, large-diameter laser
beam if an array of detectors is used as the second
fixed point in defining a straight line. Each de-
tector in the array would be given a specific z-y
coordinate, and the sphere associated with each
magnet would be offset to correspond with a par-
ticular detector, as shown in Fig. 12. Errors due to

divergence of a large-diameter beam can be
shown to be negligible. The radius of a beam is16

w(z) = w, (1 + (z/2~P)o~5 I (35)

where w, is the waist radius at z = 0 and zR is
the Rayieigh range

In a large diameter diverging laser beam, a point
that is a, off axis at z = 0 will move further off
axis. At some distance z, this would produce an
error

a(z) -a, = II, ([l + (z/z&o.5  - 1) . (37)

The Rayleigh range, tR, of a 0.4-m-diam helium-
neon laser beam is 198 km; thus the term
([l + (z/z~)*]~~~  - 1) is 1.1 x 10-6 at z = 300 m.
Since the maximum a, in this beam is 0.2 m, the
error due to divergence is less than 2.3 x 10-7 m
for any sphere in the beam.

Several detector arrays can be made identi-
cally by calibrating each against a quasi-
Hartmann plate. This Hartmann plate will be
made from a glass plate with an array of spheres
attached to one surface. The centers of the
spheres will be arranged to match the desired
array spacing. The size of the sphere will vary
so that when the array is placed perpendicular
to a laser beam, the resulting Poisson spots will
match the Poisson spots of spheres distributed
along a 300-m SLR.

Figure 11. The folded collimator provides fractional gain in the
beam-pointing resolution of the mirror mount.
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Figure 12. Many points along a magnetic axis can be monitored for
alignment simultaneously by offsetting the targets in a large-diameter
laser beam.
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