NON-ENDPOINT & DECAY MEASUREMENT OF THE ANTINEUTRINO MASS?

William Kells Fermilab, Box 500, Batavia, IL 60510

ABSTRACT

Possibilities for further β decay experiments are considered.

INTRODUCTION

The recent I.T.E.P. positive measurement of $m_{\overline{V}} \sim 35$ eV has generated an exact sensitivity criteria for the design of new experiments to confirm this result.¹ The importance of the result requires a systematic appraisal of possible experiments, especially ones with entirely different systematic error sources than the classical endpoint determinations.² In this regard the proposed Los Alamos experiment to measure the endpoint energy of <u>freely</u> decaying H³ will be crucial.³

Is there any other region of the β decay spectrum offering unique experimental advantages for measurement of either $m_{\overline{U}}$ directly (kinematically) or of the \overline{v} helicity? Generally, we expect difficulties since the antineutrino polarization = $p_{\overline{U}}/E_{\overline{V}} \approx 1 - \frac{3m^2}{2}/p_{\overline{L}}^2$ and $E_{\overline{U}} \approx p_{\overline{U}}(1 + \frac{3m_{\overline{U}}}{2}/p_{\overline{U}}^2)$ for $p_{\overline{U}} \gg m_{\overline{U}}$. Nonetheless, the phenomena of bound state β decay does provide a unique mode which allows new experiments, in principal. However, the experimental signals would be extremely small; no plausible experiment has yet been invented.

BOUND STATE & DECAY

If one considers K capture, then under crossing symmetry the t channel reaction is a β decay whose final state has the β^- <u>bound</u> to the final state nucleus.⁴ The rate is most conveniently stated as the ratio to that for free $\beta^-\beta$ decay. As expected, there is a K capture Z dependence, as well as an inverse dependence on allowed free electron phase space. For tritium we have a uniquely large relative capture probability amongst light nuclei (1%1). Bahcall has pointed out high Z cases where the capture probability dominates.⁵

MEASUREMENT OF V HELICITY

If we observe the bound state subset of neutral tritium β decays, there are two experimental advantages. First, this subset has a unique signature: a single <u>neutral</u> He³ recoil. As with K capture, only S states (with nuclear overlap) are involved. With some fraction of the total capture probability the He³zs₀ state, e.g., is populated, which can be unambiguously identified. Second, this final state is a true body decay. Any correlation to the $\overline{\nu}$ momentum is equivalent to correlation with the He³ recoil momentum. The following experiment is, in principal, possible. An initial polarized H³ ground state is prepared (F = +1) (by optical pumping or in an atomic beam). Then if we select only He³ recoils along the initial polarization direction nS₀ final states will be disallowed for $\bar{\nu}$ helicity exactly +1. Some final nS₀ population occurs for any negative helicity probability. An early hope in this study was that some situation could be devised where the relative probability of such a disallowed state would be $\sim m_{-}/Q(\sim 35 \text{ eV}/18 \text{ KeV} \sim 2\times 10^{-3})$. However, it is obvious that any final state with helicity = -1 must have probability polarization ($\approx 1 - 2m_{-}^{2}/Q^{2}$) $\approx 8 \times 10^{-6}$.

In the region of the free β^- decay spectrum where $p_{\overline{U}} \leq m_{\overline{U}}$, $1 - p_{\overline{U}}$ would be large. It is just this limit where information is lost on the direction, so that observation is integrated over $p_{\overline{U}} / \left| p_{\overline{U}} \right|$ and no helicity information remains.

MEASUREMENT OF THE He 3+ MOMENTUM

Taking advantage of the two-body decay (this time of H^{3+}) it is possible to measure the tritium decay Q^{*} value by precise measurement of the He³⁺ recoil momentum. If Q were known precisely enough from atomic and nuclear mass information, then Q^{*}-Q could measure $m_{\overline{U}}$. Unfortunately, Q^{*}-Q ~ 2($m_{\overline{U}}/Q$)² and Q is known only to 500 ppm.

One possible method of measuring Q^{*} could take advantage of modern ion trapping/storage techniques. Trapped H^{3+} ions would be sufficiently cooled and localized to measure H^{3+} velocity by T.O.F. (2000 m/s). Time resolution of 1 ns would be required. The real difficulty is absolute localization of the H^{3+} ions (few microns); and the extremely low effective source temperature required. "Start" time would be determined by observing only bound state decays to 2S which can have prompt (induced) γ deexcitation. The He³⁺ trajectory and timing would have to be precisely corrected for the recoil from γ emission.

REFERENCES

- Begorov, "Has the Neutrino a Non-Zero Rest Mass? (Tritium β-Spectrum Measurement)" (these proceedings).
- 2. J. Bergqvist, Phys. Spectra 4, 23 (1971).
- 3. T. Bowles, these proceedings.
- 4. R. Daudel et al., Comptes Rendus Acad. Sci. 224, 1427 (1947).
- 5. J. Bahcall, Phys. Rev. 124, 425 (1961).