NEUTRINO MASSES IN SU(2)×U(1) THEORIES

J. Schechter

Physics Department, Syracuse University, Syracuse, B.Y. 13210

ABSTRACT

$\operatorname{SU}(2) \times U(1)$ theories in which there are n generations and m singlet neutrino flelds are investigated. Hatural theories of this type contain massive neutrinos. The resultant gauge boson weak interactions are parametrized. A leptonic GIM mechanism does not generally hold and this leads to the possibility of a "heary" neutrino decaying into three others as well as oscillations of neutral current interactions in a neutrino beam.

INTRODUCTION

This talk is based on work done in collaboration vith J.U.F. Valle. A more detailed discussion of many pointsland appropriate references are given in ref. 1. The question of interest here is: what parameters characterize an $S U(2) \times U(1)$ theory vith massive neutrinos? In other words, what should experimentalists measure in neunalogy to the $K-M$ parameters of the hadronic weak interactions? We shall require the theory to be natural in the senses that
shall require a) There should be no arbitrary adjustment of coupling con-
or masses.
b) There should be no assumptions made about any symmetries other than $\mathrm{SU}(2) \mathrm{xU}(1)$ and (proper) Poincare invariance. In other vords the theory itself should tell us to what degree it respects things like parity, charge conjugation, time reversal, and lepton number conservation.

In $\operatorname{SU}(2) \times U(1)$ there are the three types of interactions involving neutrinos shown in Fig. 1

Fig. 1 Neutrino Interactions
The indices 1 and J differentiate fields of the same charge. We will discuss the matrices K and P here. The Higgs couplings are more model dependent; a recent discussion of them is given by Cheng and Li. We can look upon the parametrization of the matrices K and P as the "kinematics" of the gauge group $\operatorname{SU}(2) \times U(1)$. Since they give information as to the discrete symmetries they have a
"geometric" aspect. Notice that if one imposes a larger symmetry than $\operatorname{sU}(2) \times U(1)$ (GUT, for example) the parameters will generally get further restricted.

buILding blocks of the model

Although not the historical approach, the Dirac spinor may he onveniently viewed as the amalgamation of tro 2-component relativistic (van der Waerden) spinors for the purpose of obtaining a inear transformation property under the parity operation. Since we inear trant to make any assumption about C, P, T, etc. In a natural don't want to make able to work with the 2 -component spinors directly. theory its reasonable to work be considered to be the upper 2 entries, The 2-component spinors may in a γ_{5} diagonal representation: of a four component spinor in a γ_{5} diagonal representation:

$$
\phi_{L}=\frac{2+\gamma_{5}}{2} \psi=\binom{\rho}{0}
$$

The field o will be the basic building block for constructing a theory of neutrinos. The free Lagrangian using ρ and describing a particle of mass m is

$$
\begin{gather*}
\mathscr{L}=-i \rho{ }^{\dagger} \sigma_{\mu} \partial_{\mu} \rho-\frac{m}{2}\left(\rho^{T} \sigma_{2} \rho+\text { n.c. }\right) \\
\sigma_{\mu}=(\vec{\sigma},-1) \tag{I}
\end{gather*}
$$

Note that this leads to the non-linear equation of motion

$$
1 \sigma_{\mu}{ }^{2} \mu^{\rho}{ }^{\rho=-m \sigma_{2}} \rho^{*} .
$$

Furthermore ρ cannot represent an ordinary (camuting) c-number since then $\rho T^{T} \rho=\rho^{T} \sigma_{2}{ }^{T} \rho=-\rho^{T} \sigma_{2} \rho=0$. There is no problem since ve consider ρ as a quantum ${ }^{2}$ field operator

$$
\begin{gather*}
\binom{\rho}{0}=\frac{1+\gamma_{5}}{2}\left[\left(\frac{m}{E p V^{\prime}}\right)^{1 / 2}\left[e^{i p \cdot x_{u}(r)}(\vec{p})+e^{-i p \cdot x_{V}(r)}(\vec{p}) A_{r}^{+}(\vec{p})\right]\right. \\
{\left[A_{r}(\vec{p}), A_{r^{\prime}}^{\dagger}(\vec{p})\right]_{+}=\delta_{r r^{\prime}} \delta_{\overrightarrow{p p}}} \tag{2}
\end{gather*}
$$

(Here $u^{(r)}(\vec{p})$ and $v^{(r)}(\vec{p})$ are the ordinary mass min Dirac wavefunctions). Using the canonical procedure and the field expansion (2) we find the energy operator

$$
\mathrm{H}=\sum \sqrt{\vec{p}^{2}+\mathrm{m}^{2}} \mathrm{~A}_{\mathrm{r}}^{\dagger}(\vec{p}) \mathrm{A}_{r}(\vec{p}),
$$

so the theory has a usual particle interpretation. Note that in general \mathcal{L} of eq. (1) violates lepton number. A collection of terms like (1) is more general than a collection of free Dirac Lagrangians. The Dirac Lagrangian is in fact a special case, being the sum of two with equal masses. Specifically

$$
\begin{align*}
& \mathcal{L}_{\text {Dirac }}=\mathscr{L}\left(\rho_{1}, m\right)+\mathscr{\alpha}\left(\rho_{2}, m\right) \\
& \Psi_{\text {Dirac }}=\binom{x}{\sigma_{2} \phi^{\prime \prime}} \\
& x=\frac{1}{\sqrt{2}}\left(\rho_{2}+i \rho_{1}\right), \phi=\frac{1}{\sqrt{2}}\left(\rho_{2}-i \rho_{1}\right) \tag{3}
\end{align*}
$$

A WARM UP EXERCISE

For this purpose we consider the parametrization of the hadronic charged current veak interactions given the generalized Cabibbo or Kobayashi-Masiawa matrix, C. The matrix appears in a term

$$
W^{+} U_{L} \gamma C D_{L}
$$

where $U_{I_{~}}$ and D_{L} are columns of up and down quarks, respectively. C can be taken to satisfy

$$
\mathrm{c}^{+}=\mathrm{c}^{-1}, \operatorname{det} \mathrm{c}=1
$$

C of course arises in the first place because of the need to bring the mass term of the Lagrangian to diagonal form. It can be parametrized (using all the generators of the group $S U(n)$) as a product of a diagonal matrix of phases, $\omega_{0}(\gamma)$ and matrices describing
"complex rotations" in each plane, $\omega\left(\eta_{a b}\right)$:

$$
\begin{align*}
& c=\omega_{0}(\gamma) \pi \omega\left(\eta_{a b}\right) \tag{4}\\
& \omega_{0}(\gamma)=\operatorname{diag}\left(e^{i \gamma_{1}}, e^{i \gamma_{2}}, \ldots, e^{i \gamma_{n}}\right) \\
& \quad \gamma_{1}+\gamma_{2}+\ldots+\gamma_{n}=0, \tag{5}
\end{align*}
$$

Here
and setting $\eta_{a b} \equiv f \eta_{a b} \mid e^{10} \mathrm{ab}$ we have for the (12) rotation for example

A very useful identity is

$$
\begin{equation*}
\omega_{0}(a) \omega\left(\left|\eta_{a b}\right| e^{1 \theta_{a b}}\right) \omega_{0}^{+}(\alpha)=\omega\left(\left|n_{a b}\right| e^{1\left(\theta_{a b}+\alpha_{a}-\alpha_{b}\right)}\right) \tag{6}
\end{equation*}
$$

Because D and U are Dirac fields equivalent new ones have different
phases but leave \mathcal{Q} invariant. Redefining phases but leave $\mathcal{L}_{\text {Dirac }}$ invariant. Redefining

$$
\begin{align*}
& D=\omega_{0}^{t}(\alpha) D^{\prime} \\
& U=\omega_{0}(\gamma-\alpha) U^{\prime} \quad \tag{7}
\end{align*}
$$

changes the interaction to $W^{\dagger} \bar{U}_{L}^{\prime} Y C_{e f f} D_{L}^{\prime}$ where, using (6),

$$
\begin{equation*}
c_{e f f}=\prod_{a<b} \omega\left[\left|n_{a b}\right| e^{i\left(\alpha_{a}+\theta_{a b}-\alpha_{b}\right)}\right] \tag{8}
\end{equation*}
$$

The ($n-1$) independent phases $\alpha_{\text {a }}$ are at our disposal so we may use them to eliminate any ($n-1$) of the $\theta^{\prime}{ }^{\prime} s$. Thus the resulting matrix In (8) has $n(n-1) / 2$ real angles $\mid \eta_{a b} f^{\text {a }}$ and $n(n-1) / 2-(n-1)$ CP violating phases. Hote that the above procedure gives both a counting and an explicit parametrization.

$$
\text { THE (} n, m \text {) MODELS }
$$

For the lepton sector of the theory many models of interest are of the class where there are n neutrino fields belonging to SU(2) doublets and m neutrino singlets. In a natural theory the free neutrino part of \mathcal{L} will look like the sum of ($n+m$) Lagrangians (1) with the additional possibility of non-diagonal mass terms:

$$
\begin{equation*}
\mathcal{L}_{\text {Free }}=-\sum_{\alpha=1}^{m+n}\left[i \rho_{\alpha}^{\dagger} \sigma_{\mu} \partial_{\mu} \rho_{\alpha}+\frac{1}{2}\left(\rho_{\alpha}^{T} \sigma_{2} M_{\alpha \beta} \rho_{\beta}+\text { h.c. }\right)\right] \tag{9}
\end{equation*}
$$

Here the mass matrix M is decomposed as

$$
\begin{align*}
& M=M^{T}= {\left[\begin{array}{ccc}
M_{1} & 1 & D \\
\hdashline D^{T} & 1 & M_{2}
\end{array}\right] } \tag{10}\\
& 1 \\
& 1-n \rightarrow M \rightarrow N
\end{align*}
$$

A natural possibility is to have $M_{1}=0$; we call this a theory of type II. We would like to introduce physical neutrino fields, v to bring (9) to the form

$$
\begin{align*}
\mathscr{L}_{\text {Free }} & =-\sum_{\alpha=1}^{n+m}\left[i v_{\alpha}^{\dagger} \sigma_{\mu} \partial_{\mu} v_{\alpha}+\frac{1}{2}\left(v_{\alpha}^{T} \sigma_{2} v_{\alpha} x_{\alpha}+\text { h.c. }\right)\right], \\
& x_{\alpha}=\text { real masses. } \tag{11}
\end{align*}
$$

Since the pirst term in (9) is of the same form as the first term in (11) we must have

$$
\begin{equation*}
\mathrm{D}=\mathrm{UN}, \mathrm{U}^{\dagger}=U^{-1} . \tag{12}
\end{equation*}
$$

Fir the second term we require
$T_{T}^{T} M=x=r e a l$, diagonal.
Because U^{5} rather than U^{\dagger} appears in (13) this is not the usual diagcialization problem. But (see ref. 1 for detaflsl ve can always Find a U satisfying both (12) and (13). Note from (III that phase chazes on the v_{a}

$$
v_{a}+e^{i \theta} q_{0}
$$

vin not leave \mathscr{L} Free invariant. Thus there is less phase freedom tian for Dirac feree.

능 interaction terms expressed in terms of the "bare" flelds 100i itre

$$
\begin{equation*}
W \sum_{j=1}^{n} \bar{Z}_{L} Y \dot{\rho}_{\alpha} \quad \text { and } z^{\circ} \sum_{\alpha=1}^{n} \bar{\rho}_{\alpha} Y \rho_{\alpha} \tag{14}
\end{equation*}
$$

בere $\Xi \leq 5$ the column of bare electron type flelds and for simplicity ve vera ryitten 0_{α} for $\binom{\rho_{\alpha}}{0}$. When the transformations (12) to the

$$
\begin{equation*}
\bar{e}_{e_{i}} Y K \nu \quad \text { and } z^{\sigma} \bar{v} Y P v . \tag{15}
\end{equation*}
$$

 ©inrrez rectangular form

$$
\begin{equation*}
X_{b a}=\sum_{c=1}^{n}\left(\Omega^{\dagger}\right)_{b c} U_{c a}=\square^{n+m} \tag{16}
\end{equation*}
$$

blt

where (16) vas used in the last step. We make the following remarics

1) Eq. (19) shows that if ve know K, ve know P so it is only necessary to parametrize K.
2) There is no GIM mechanism (this mechanism is the atatement $\mathrm{p}=1$) for leptons, in general, unless there are no $\mathrm{SU}(2)$ singlet neutrino ficlds present (m=0).

11i) $\mathrm{g}=\mathrm{P}$
iv) $\mathrm{P}^{2} \mathrm{P} \mathrm{P}$ so it is a projection matrix.

PARAMETRIZING K
The rows of K are a set of $n, m+n$ dimensional orthonormal complex vectors. The number of real parmmeters needed is thus equal to:
nomalizations orthogonalizations electron phases

$$
\begin{equation*}
2 n(m+n)-n-n(n+1)-n^{4}=n(n+2 m-1) \tag{20}
\end{equation*}
$$

K is a truncated unitary matrix but first parametrizing the unitary matrix and then truncatiog will in general yield too many parameters.
For example, consider the rectangular matrix wifch comprises the
first row of a 4×4 real orthogonal matrix. Parametrizing the 4×4
matrix will generally give a first rov which depends on six angles.
Clearly only four (including the resolution of a sign ambiguity) are needed. We proceed as follows, using the basic "rotations"
$\omega\left(n_{a b}\right)$ introduced earlier. Define the unit vectors

$$
\vec{e}^{(1)}, \vec{e}^{(2)}, \ldots, \vec{e}^{(n)}
$$

by $e_{B}^{(\alpha)}=\delta_{\alpha B}$. Take the first rov of K to be the transpose of

$$
\begin{equation*}
x^{(1)}=\pi_{a=2}^{n+m} u\left(\eta_{1 \alpha}\right) e^{(1)} \tag{21a}
\end{equation*}
$$

the second row of K to be the transpose of

$$
\begin{equation*}
x^{(2)}=\sum_{a=2}^{n+m} \omega\left(n_{1 a}\right) \prod_{\beta=3}^{n+m} w\left(n_{2 \beta}\right) e^{(2)} \tag{21b}
\end{equation*}
$$

and so on. The counting of parameters is easily veripled to agree With (20) and the orthogonality of different rovs can be seen, for example, by

$$
x^{(1)^{\dagger}} x^{(2)}=\underbrace{e_{B=3}^{(1)^{\dagger}} w\left(n_{2 B}\right)}_{e^{(1)^{\dagger}}} e^{(2)}=0
$$

We make the following remarks:

1) Eqs. (21) are obtained by multiplying matrices with non-trifial 2×2 sub blocks together. Thus they way be falriy convenient in
practice.
(1i) The number of angles $\left|\eta_{a b}\right|$ in the parametrization equals the number of phases θ.
(111) In type II models, where M_{1} of (10) vanishes, there vill be at most ($n-m$) fewer real parameters. This number is the number of generstors of $u(n-m)$.

Scme examples:

Theory	angles	phases	total
$(3,0)$ II	0	0	0
$(2,0)$ I	1	1	2
$(3,0)$ I	3	3	6
$(4,0)$ I	6	6	12
$(3,3) I$ or II	12	12	24
$(3,2)$ I	6	6	12
$(3,1)$ II	5	3	0

The usual 3 generation momel vith massiess neutrinos is (3,0) II in the present notation. Note that owing to the smaller phase freedom for the spinors v_{p} in (11), the (3,0) I case, for example, requires more parameters than does the K matrix for three quark generations.

CONSEQUENCES OF PF1

1.The decay of a neutrino into three lighter ones is now permitted if the qualue is right. As a crude estimate, the parent neutrino is required to be heavier than about 2 MeV if its iffetime is to be leas than 2000 sec .
2. Feutral current oscillations in neutrino beams are now possible. This is also discussed by Barger, Langacker, Leveille, and Pakrage.

A schematic diagram of an experiment to detect oscillations in neutrino reactions mediated by charged W exchange is given in Fig .2

Fig. 2 Charged Courrent Oscillation experiment
Let us denote the probability factor for observing an electron of typeb in the above experinent by $I_{c c}(a-t, t)$. If K is a square watrix $(m=0)$ one will have

$$
\sum_{b} I_{c c}(a \rightarrow b, t)=1 .
$$

However in general we now have

$$
\begin{equation*}
\sum_{b} I_{c c}(a \rightarrow b, t \mid \leqslant 1 \tag{22}
\end{equation*}
$$

Next consider an experiment designed to detect oscillations in neutrino reactions involving Z° mesons exchanged from hadrons, shown

Fig. 3 Neutral Current Oscillation Experiment
This will be described ${ }^{\text {by }}$ a probability factor $I_{\text {NC }}(a r v ' a, t)$. Using
the properties of $p=k K$ we find for real K.

$$
\begin{equation*}
I_{N C^{\prime}}\left(a+v^{\prime} s, t\right)=\int_{b} I_{c c}(a \rightarrow b, t) \tag{23}
\end{equation*}
$$

In the usual case the right hand side of (23) is 1 and thus contains no time dependence. However this is no longer true in general. For example taice $a(1,1)$ theory vith real K given by

$$
K=(\cos \theta \sin \theta) .
$$

Then (23) yields

$$
\begin{equation*}
I_{N C}\left(1+\nu^{\prime} s, t\right)=I_{C C}(l+1, t)=1-\sin ^{2} 2 \theta \sin ^{2}\left[\frac{\left(E_{1}-E_{2}\right) t}{2}\right] \tag{24}
\end{equation*}
$$

This shows the neutral current oscillation phenomenon. $I_{\text {fC }} / I_{C C}$ is
 of (23). This feature does not hold in general.

Finally, if it is assumed that the submatrix M_{2} in (10) is large compared to the other entries (Gell-Mann, Ramond, Slansky mechanism) then P will have the approximate form
$P=\left\{\begin{array}{c:c}1 & \operatorname{l}_{\text {small }} \\ \hdashline \operatorname{small}^{\dagger} & (\text { Bmall })^{2}\end{array}\right]$,
where amall means order of $\left(\mathrm{DM}_{2}^{-1}\right)$. Lov mass neutral current neutrino oscillations will not be important in such a case.

REFERENCES

. J. Schechter and J.W.F. Valle, Phys. Rev. D22 (1980)
2. Cheng and Li, Carnegie-Mellon preprint (1980).
. V Barger, P. Langacker, J. Leveille, and S. Pakyasa, Phys. Rey. Lett. 45, 692 (1980). Also Gell-Mann, Stephenson, and SLansky (unpublished). D. Wu, Harvard preprint (19801.
4. M. Gell-Mann, P. Ramond, and R. Slansky in Supergravity, edited by P. Van Nieuwenhaizen and D. freedmore (North-Holland, Amsterdam, 1979).

neutrino mass in the so(10) model*

Yukio Tomozawa

Randall Laboratory of Physics, University of Michigan

 Ann Arbor, MI 48109
ABSTRACT

The question of neutrino mass in the $\mathrm{SO}(10)$ grand unified auge theory is considered. It is pointed out that while the radiative corrections generate the left hand Majorana mass of neutrino, it is smaller than that obtained by diagonalization of the eass matrix consisting of the Dirac mass and a large right hand Majorana mass.

In the standard electroweak theory, there is no particular reason for neutrino not to have mass. A real mystery, however, is apparent smallness of its value, if not zero. Several experiments 1 (though all are merely circumstantial evidences at best) indicates that some of the neutrinos may have masses in the range of $1 \sim 30 \mathrm{eV}$. In recent articles, ${ }^{2,3}$ a suggestion has been made $1 \sim 30 \mathrm{eV}$. In recent in the $\mathrm{S}^{(10)}$) gauge mode 1^{4} can generate a that a Higgs mechanism in the Sight handed (RH) neutrino and then large Majorana mass for the right (IH) (An) aresults from the a small mass for the left handed (LH) neutrino results from the diagonalization of the mass matrix.

In this talk, we discuss the problem of the LH neutrino mass by radiative corrections and see whether the above mechanism for the explanation of the observed small neutrino mass is spoiled or not:

Let us start with a general discussion of the Dirac mass and the Majorana mass. A general expression for the wass term for neutrino is given by

$$
\begin{align*}
-\ell & =\frac{1}{2} M_{R}\left(\bar{v}_{R}^{c} v_{R}+\bar{v}_{R} v_{R}^{c}\right)+\frac{1}{2} w_{L}\left(\bar{v}_{L}^{c} v_{L}+\bar{v}_{L} v_{L}^{c}\right) \\
& +m\left(\bar{v}_{L} v_{R}+\bar{v}_{R} v_{L}\right) \tag{1}
\end{align*}
$$

where M_{R} (m_{L}) and m are the Majorana masses for the RH (LH) neutrino $v_{R}\left(v_{L}\right)$ and the Dirac mass respectively. The suffix c stands for $\mathrm{R}_{\text {the }} \mathrm{L}_{\text {charge }}$ conjugated field and is defined by

$$
\begin{equation*}
\psi^{c}=c \psi^{-T}, \quad \psi^{c}=-\psi^{T} c^{-1} \tag{2}
\end{equation*}
$$

*A talk presented in the Neutrino Mass Miniconference and Workhop held at Telemark Lodge, Wisconsin on Oct. 2-4, 1980.

