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ABSTRACT

SU(2)xU(1) theories in which there are n generstions and m
singlet neutrino fields are investigated. Natural theories of this
type contain massive neutrinos. The resultant gauge boson veak inter-
actions are parametrized. A leptonic GIM mechanism does not gen-
erslly hold and this leads to the possibility of & "heavy" neutrino
decaying into three others as well as oscillations of neutral current
interactions in a neutrino beam.

INTRODUCTION

This talk is based on work done in collaboration with J.¥W.F.
Valle. A more detailed discussion of many points(and appropriate
references are given in ref. 1. The question of interest here is:
vhat parameters characterize an Su(2)xU(1) theory vith massive
peutrinos? In other words, what should experimentalists measure in
analogy to the K-M parameters of the hadronic weak interactions? We
shall require the theory to be natural in the senses that

a) There should be no arbitrary adjustment of coupling con-
stants or masses.

b) There should be no assumptions made about any symmetries
other than SU(2)xU(1) and (proper) Poincare invariance. In other
words the theory itself should tell us to what degree it respects
things like parity, charge conjugation, time reversal, and lepton
number conservation.

In SU(2)xU(1) there are the three types of interactions in-
volving neutrinos shown in Fig. 1
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Fig. 1 RNeutrino Interactions

The indices 1 and ) differentiate fields of the same charge.
Ve will d.iscu;s the matrices K and P here. The Higgs couplings are
more moSel dependent ; a recent dlscussion of them is given by Cheng
and Li. We can look upon the parametrization of the matrices K
and P as the "kinematics” of the gauge group SU(2)xU(1). Since
they give information as to the discrete symmetries they have a
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"geometric" aspect. Notice that if one imposes & larger symmetry than
su(2)xu(1) (cur, for example) the parameters will generally get
further restricted.

BUILDING BLOCKS OF THE MODEL

Although not the historical approach, the Dirac spinor may be
conveniently viewed as the amalgametion of two 2—component rel-
ativistic (van der Waerden) spinors for the purpose of obtaining a
linear transformation property under the parity operationm. Since we
don't want to make any sssumption sbout C,P,T, etc. in a natural
theory its reasonable to work with the 2-component spinors directly.
The 2-component spinors may be considered to be the upper 2 entries,
p of & four component spinor in a Y5 diagonal representation:

%f£;§¢'tj

The field p will be the basic bullding block for constructing a
theory of neutrinos. The free Lagrangian using p and describing a
particle of mass m is

_ + m T
L= -ip cuaup-a(p o,p* h.c.)
0,=(5,-1) a)
Note that this leads to the non-linear equation of motioz‘x
ic 3 p=-mop*.
w? 2f
Furthermore p cannot represent an ordinary (commuting) c-pumber since

then pTozp=pT02Tp=-pTa2p=0. There is no problem since ve consider
p as a quantum field operator

1+y 1/2 . -+ - - ->
() - =2 1w L %) @2 @ TG0

(A3 TG, =6 1653 (2)
(Bere u(r)(;) and V(r) (p) are the ordinary mass m Dirac wavefunctions).
Using the canonical procedure and the field expansion (2) we find

the energy operator

Bl /2o ALGIA ),

so the thgory has a usual particle interpretation. Note that in
general of eq.(1) violates lepton number. A collection of terms
1ike (1) is more general than a collection of free Direc Lagrangiens.
The Dirac Lagrangian is in fact a special case, being the sum of

two with equal masses. Specifically
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A VARM UP EXERCISE

For this purpose we consider the parametrization of the hadron-
ic charged current veak interactions given the generalized Cabibbo
or Kobayashi-Maskawa matrix, C. The matrix appears in a term

—

w ULYCDL
vhere U, and D, are columns of up and down quarks, respectively. ¢C
can be ]t"a.ken t0 satisfy

-

c*=cl, det c-1.

C of course arises in the first place because of the need to bring
the mass term of the Lagrangian to diagonal form. It can be para-
metrized {using all the generators of the group SU(n)) as & product
of e dlagonal matrix of phases, @ _(Y) and matrices describing
"complex rotations" in each plane, w(nab):

¢ =0 (v) T wln,) )
a<b
Here :I.yl’ iy, iYn
NO(Y)=disg(e I O T
LNAAALE .+'yn=0 , (s)
. 18 ab
and setting nng l’nabl e ve have for the (12) rotation for example
i8
] 12
[ cos|n12| e sin]n12I 0 )
-16
12 - - .
w(n12)= -e sinlnlzl coslnlzl 0
o 0 T ...
\ . . . J

A very useful identity is

i(eabwa-q'b) )

ieab +
uy(aulln yle " (a)=u(In g, |e (6)
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Because D and U are Dirac fields equivalent new ones have different

phases but leave Dirac invariant. Redefining

D=w°+(a)n'

n
U=u_(y-a)u' azla:o n

1\_' 1]
changes the interaction to W ULYCeffDL where, using (6),

i(a_+6 b~ %)
ert = 1. (8)

c..=ntulln e
a<b l a.bI
The (n-1) independent phases a_ are at our disposal so we may use
them to eliminate any (n-1) of®the @ p'8: Thus the resulting matrix
in (8) has n(n-1)/2 real angles |n bT and n{n-1)/2-(n-1) CP vio-
lating phases. HNote that the abov® procedure gives both a counting
and an explicit parametrization.

THE (n,m) MODELS

For the lepton sector of the theory many models of interest are
of the class where there are n neutrino fields belonging to SU(2}
doublets and m neutrino singlets., In a natural theory the free
neutrino part of o will look like the sum of (n+m] Lagrangians (1)
with the additional possibility of non-diagonal mass terms:

& i 1T
Free~ -cZl[ipaouaupa*-é(pu%"aﬁpf h.ec.)]. (9
Here the mass matrix M is decomposed as
MM=fu | D
oT —: M, . (10)
I‘-n—:‘—m-u

A natural possibility is to have M. =0; we call this a theory of
type II. We would like to introduce Ehx}ical neutrino fields, v
to bring (9) to the form
n+m
1 1, T
¢ =-7 [iviod v +(vig v x+h.c)l,
Pree =1 agua? cxgaxa

xa'real masses. (11)

Since the first term in (9) 1is of the same form as'the first temm
in (11) we must have

o=y, vty (12)




Fcr the second term we require
U MJi=xareal, diagonal. (s}

Secause U° rather than U' appears in (13) this {s not the usual
diagoralization problem. But (see ref. 1 for details] we can always
#ind 8 U satisfying both (12} and (13). Note from (11] that phase
chacges on the v
18 e

e %

a a
vill npt leave oﬁg o invarisnt. Thus there is less phase freedom
thar for Dirac r16fdS.

"™e interaction terms expressed in terms of the ™bare" frields
look like

_ ‘i - . ° 3 -

W Yo and 2 p_YP (1k4)

wlzl' a oy O G

Fere £ is the column of bare electron type fields and for simplicity

ve Zeve written *p for ru]. When the transformations (12) to the

)
pcyszzst V's and EL=ﬂLe to the physical e's are made (14) takes the
e YKy and 2%WyPv. (15}

Y a=2 F are the matrices of interest shovn in Fig 1. K is of the
s owizg rectangular form

hem
2.t
I YoeVea™ n (16)
c=l
It sazicfles »
Tga1= 1 [» amn
but Wi
a‘= ™ dne #1 (18)

7%e mstrix P 1s an (n+m)x(n+m) square matrix given by
B
s + P
®aa .Elu aalan= (KK ) gs (19)

vhere {16) was used in the last step. We make the following
remarzs
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1) Eq.(19) shows that if wve know K, Ve know P so it is only
necessary to parametrize K.

i1) There is no GIM mechanism { tbis mechanism is the statement
P=1) for leptons, in general, unless there are no SU{2) singlet
neutrino fi*lds present (m=0).

111) B=pP

iv) P°=P so it 18 a projection matrix.

PARAMETRIZING K

The rows of K are a set of n, m¢n dimensional orthonormal

'complex vectors. The number of real parameters needed is thus

equal to:
normalizations orthoynaliz:ti} electron phases
2n{m+n) - o - n{n+l) - 0= n(n+2m-1) (20)

K is a truncated unitary matrix but first parametrizing the unitary
matrix snd then truncating will in general yield too many parameters.
For example, consider the rectangular matrix which comprises the
first row of 8 hxl real orthogonal matrix. Parametrizing the x4
matrix will generally glve a first rowv which depends on six angles.
Clearly only four (including the resolution of a sign ambiguity) are
needed. We proceed as follows, using the hagic "rotations"

u(nlb) introduced earlier. Define the unit vectors

@) e

by eéu)'caﬁ Take the first rov of K to be the transpose of

n+m
x(l)s 7 u(nlu)e(l), (21a)
=2
the second row of K to be the transpose of
ném n+m
x{2. ) wing } w m(nzﬂ)e(z). (21v)
a=2 B=3

and s0 on. The counting of parameters is easily verified to agree
with (20) end the orthogonality of different rovs can be seen,
for example, by

f

f
1) (@), (1)

e‘z)-o.

7 cwin,,)
7, o

1‘
(1)
We make the following remarks:

1) Bqe.(21) are obtained by multiplying matrices with non-trivial
2x2 gub blocks together. Thus they may be fairly canvenient in

2



practice.
{4i) The number of angles |nabl in the parametrization equals the

pumber of phaases 8 b

(111) In type 1% nodels, where M. of (10) vanishes, there will be
at most {(p-t)° fever real parameters. This number L{s the number of
generators of Uin-m).

Scume examples:

Theory ﬂ}es Phueg total
(3,0)11 o 0 0
(2.0)T 1 1 2
(3,0)1 3 3 6
(h.0)1 6 6 12
(3,3)T or II 12 12 24
(3,11 6 6 12
(31011 5 3 8

The usual 3 generation model Witk massless neutrinos is (3,0)II in
the present notation. HNote that owing to the smaller phase freedonm
for the spinors v_ in (11}, the (3,0)I csse, for example, requires
more paraceters tBan does the KM matrix for three quark generations.

CONSEQUENCES OF P#1

1.The decay of a neutrino into three lighter ounes 1is now per-
mitted 1f the Q-value is right. As & crude estimaste, the parent
peutrino is required to be heavier than about 2 MeV if its lifetime
is to be leass than 1000 sec.

2. Neutral current oscillations in neutrino beams are aow pos-
sible. i8 is also discussed by Barger, Langacker, Levellle, and
Pakvasa.

A schematic dlagram of an experiment to detect oscillations in
neutrine resctions mediated by charged W exchange is given in Fig. 2
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Fig.2 Charged Current Oscillation experiment

let us denote the probabllity factor for cobserving an electron of
typed in the above experiment by Icc(a-b,t). It K is & square
matrix (n=0) one will have
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1T (asb,t)=1.
» c¢
However in general we now have

gIcc(r'b Jthel. (22)

Next consider an experiment designed to detect oscillations in

neutrino reacti v
b actions involving 2~ mesons exchanged from hadrops, shown

/dutrm f’pl a . a;qz .
_newtrin
SOURCE HEUTRING BEAM [ Limw
IneTE cToR

Fig. 3 Neutral Current Oscillation Experiment

This will be described. by a probabilit
e Yy factor I SN .
the properties of P=KK1' we r.indE for real K: nc(a ot). Ueing

Incfa*u's,t)=£1cc(a*b,t) (23)

In-the usual case the right hand side of (23) 18 1 and thus con~
tains no time dependence. However this is 0o longer true in gen-
eral. TFor example take a (1,1) theory with real K given by

K=(cos® sing).
Then (23) yields

(E,-E )t
INC(1¢v'a,t)=Icc(1+1,t);l—sinazesxnz[ L2 A]. (24)

This shows the neutral current oscillation phenomenon. /1
constant in time becsuse there is only one term on the r ng ce
of (23). This feature does mot hold in general. T
Finally, if it is assumed that the submetrix M, in (10) is
lerge compared to the other entries (Gell-Mann, Ramina Slan.slqu
mechanism) then P will have the approximste forn i

1 lapan
p= —
i
small*,(mll)z ,
vhere small means order of (IM
neutrino oscillations will pot

is

-1
2, ). Lov mass neutral current
e important in such a case.
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ABSTRACT

The question of neutrino mass in the SO(10) grand unified
gauge theory is considered. It is pointed out that while the
radiative corrections generate the left hand Majorana mass of
neutrino, it is smaller than that obtained by diagonalization of the
mass matrix consisting of the Dirac mass and a large right hand
Majorana mass.

In the standard electroweak theory, there is no particular
reason for neutrino not to have mass. A real mystery however, is
apparent smallness of its value, if not zero. Several experiments
(though all are merely circumstantial evidences at best) indicates
that some of the neutrinos may have masses in the range of
1~ 30 eV. In recent articles,z’3 a suggestion has been made
that a Higgs mechanism in the S0(10) gauge model* can generate a
large Majorana mass for the right handed (RH) neutrino and then
a small mass for the left handed (LH) neutrino results from the
diagonalization of the mass matrix.

In this talk, we discuss the problem of the LH peutrino mass
by radiative corrections and see whether the above mechanism for
the explanation of the observed small neutrino mass is spoiled
or not. .

Let us start with a general discussion of the Dirac mass and
the Majorana mass. A general expression for the mass term for
neutrino is given by

) - c 1 —c - ¢
p= = + P
2= 5 M(Vpvp + vpvp) + g my vy, + Vo)

+ m(zivn + ;ivL) (1)

where Mg (mL) and m are the Majorana masses for the RH (LH)
neutrino v, (v;) and the Dirac mass respectively. The suffix ¢
stands for the charge conjugated field and is defined by

-1

-, ¥ =-vic @

*A talk presented in the Neutrino Mass Miniconference and Work-
shop held at Telemark Lodge, Wisconsin on Oct. 2-4, 1980.





