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moment), for example, are of the form {igK = +1}, f.e. of positive
0

parity and having only large components. It is being presently
investigated to find out what sort of wave functions of the neutrino
tunnels through the barrier when such a state decays and what
polarization it will have.

We conclude that the perturbative treatment of magnetic inter-
actions overlooks some important effects at high energies, even for
small magnetic moments. These effects have been used elsewhere 10,8
for hadronic processes. For the neutrino, even a small magnetic
moment could lead to its capture by other charged particles and to
deviations from lowest order scattering cross sections at very high
energies.
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NEUTRINO OSCILLATIONS OF THE SECOND CLASS
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I - INTRODUCTION

In this talk I would like to discuss a new class of oscillations
which occurs when Majorana and Dirac mass mixings are present in the
Lagrangian of the charge zero leptons. The talk will be very elemen-~
tary in nature and 1 refer the interested reader to the references
for the general formalism and the proofs of the various statements.

I have tried to define the concepts of Majorana mass mixings and
Majorana neutrinos in the simplest possible way in Section II.
Section III considers the standard model of weak interactions and the
possible mass terms for the neutrinos. First and second class
oscillations are defined in Section IV and the phenomenology of
these oscillations is reviewed in Section V. Conclusions and
heresies are presented in the last section. For the convenience of
the reader a brief appendix contains the various properties of
Majorana meutrinos. The literature on second class oscillations is
growing fast. I apologize to any author whose work I may have
omitted through ignorance.

I1 - MAJORANA MASS MIXINGS AND MAJORANA NEUTRINOS

All theoretical predictions are obtained from a perturbation
expansion, the only thing we can do at present. The full
Hamiltonian 18 as usual split into a "free" Hamiltonian B_ and an
interaction term Bint' °

H= Bo +Bint'

To obtainany answer the conventional procedure must be followed:
one diagonalizes H. (finds the eigenstates) and then one expands in
powers of Bint in the eigenbasis which diagonalizes Ho. Ho usually

contains two independent pieces corresponding to kinetic energy
terms and mass terms. The kinetic energy terms will be neglected
in the sequel: they take care of themselvesl. We shall loock in
detail at the mass terms. Note that the eigenstates of the free
Hamiltonian,i.e.,the mass eigenstates,will be the asymptotic
particle states. Let us look at the simplest example of a mass
term. The Dirac equation for the electron comes from the
Lagrangian

2, = VANV + m 9¥ m

The mass term is n, V9. Its interpretation is clear: L is the



mass of the electron and ¢y the probability (number) density, so
the product is the mass energy. We may wonder why no other mass
terms appear in Eq. (1). Indeed we know that the positron is
described by the wave function (field)

vo s oyler =t Yok @

*c {s basically the complex conjugate of ¢, the matrices guarantee
that it transforms as a Lorentz gpinor. We can immediately think
of two other bilinear mass terms:

"¢ ,c
) = *__* 3)

c . T S
) m ¥y +md v

These terms are perfectly Lorentz invariant. H’has is_wrong with
them? It is a simple exercise to prove that ¥ ¥ = ¥. Hence
(1) is nothing wmore than the Dirac mass term and does not represent
anything new._ On the other hand,we can easily see that (11) is
different. ¢Cy Tepresents the probability that an electron
becomes a positron! But this process is ludicrous, since it
does not comserve electric charge! Hence if electric charge is
to be conserved we cannot allow a term 1ike (i1) in our Bamdltonian.
It is instructive and will later be useful to derive this in
another way. The concept of electric charge conservatiom implies a

sympetry in the theory: ¥ =+ eieew. Wc -> e—ieevc leaves the

Bamiltonian invariant. We see indeed that

Zi.ee“’(:w + mi c—Zie&;'c )

w ¥+ W am e
So (i1) is clearly non-invariant, a statement which is equivalent
to saying that it does not conserve electric charge.
Suppose however that we were describing a massive neutrino,
which 1s electrically neutral. The most general mass Bamiltonian
we could write down would then be:

- c, c c - c

“ms'd(‘&‘#"'WW)*“(\PW"'W) (€))
where we have used W wc wc and assumed real parameters for
simplicity. The first two terms are called Dirac type mass terms,
the last one (same as 3(ii)) is a Majorana type mass term. The
Majorana mass terms connect a field with a conjugate field, hence
they violate any kind of conservation law associated with the field?
We easily see that they violate lepton number congservation. If ¥
carries lepton number +1, +€ carries lepton number -1, and the
Majorana terms violate lepton number of two units! Hence Do
useful (additive) quantum pumberJ can be defined when Majorana mass
terms are present. What are the mass eigenstates associated
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with (5), 1i.e., vhat are the elementary particles states? We
can diagonalize Eq. (5) by defining:

c c
x = as 2 o= 1 ey (6)
Z vz
Then:
H o = (HXCHE-M6 M

The transformation (6) also diagonalizes the kinetic energy term
and we see therefore that the Hamiltonian (5) describes two

free fermions x and ¢ with masses 2(4+d), 2(d-M) respectively.
Let us investigate these fermions more carefully. Clearly charge
conjugating twice leads ome back to where one started: (tc) = Y.
It easily follows that

xS=% =9 (8
i.e. the fermions x and ¢ are their own antiparticles (like the
#° but fermions). Self-conjugate fermions are called Majorana
fermions. A Majorana fermion has by its very definition no
charge or other quantum number since the anti-particle would
carry the opposite quantum pumber 3 Hence only neutrinos can be
Majorana fermions. Since the fields X and ¢ represent fermionms,
they have four components. The relation (8) guarantees that
only two components are independent, A Majorana neutrino is
therefore a two-component object.

Lepton number cannot be conserved anymore. This
is easily seen since if } was a lepton, ¥ 1s an antilepton, but
the mass eigenstates ¢ and X are superpositions of leptoms and
antileptons. We summarize what we have learned until now: the
description of neutrinos naturally leads ome to consider Majorana
mags terms in the Hamiltonian. The mass eigenstates are then two-
component Majorana neutrinos. Lepton number cannot be defined
anymore.

Are we saying therefore that anmy theory describing neutrinos
will lead to Majorana mass eigenstates? Of course not. We can
choose to eliminate the Majorana mass term by simply demanding
that lepton number be conserved! In the case of one neutrino V¥,
1f we require that the transformation

c -18 ¢
e

v, ey ®

be an invariance of the Hamiltonian, them M=0 in Eq. (5). The mass
eigenstate 1s then the four-component Dirac neutrino V.

We conclude this section by stating without proof that the
above continues to hold if we are describing many neutrinos.
Indeed let “’1' i=1,2...N be the fields in the Hamiltonian.
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(1) 1f the mass terms are only of the Dirac type, i.e. b1y then
the mass eigenstates will be four-component fermions. A lepton
number can be defined and is conserved by the mass Hamiltonian.
(2) 1If both Majorana and Dirac mass mixings are present, the
eigenstates will be 2N two-component Majorana neutrinos. Lepton
number cannot be conserved anymore.

III - REALISTIC MODEL

We have only focused our attention so far on the mass term
in H . We have not worried about the fact that neutrinos are
left-handed,etc.... We now study a realistic model, which is a
simple extension of the Standard Weak Gauge Interaction Modelé
(SW-GIM). The weak interactions are postulated to be invariant
under local transformation of the group SU(2)xU(1l). Because the
charged veak current is known to be left-handed, the particles are
put into the following representation:

Ve vu Ve weak SU(2) W
- - -1 " doublets
el Pl "I

e u T charged SU(2)
R R R singlets b o)
meR uuR m-rR neutral SU(2)

singlets

Several technical comments must be made before continuing. The
subscripts L,R correspond to left-and right-handed chiral projections
(11-}5)/2 respectively. In writing (10) we have also assumed that
the fields e”,y”,t"... describe the electron, muon and tau.
Hence we have assumed that the mass matrix has already been
diagonalized in the charged sector. Since we know that the charged
leptons are massive,we need both a left-and right-handed part for
them. Since on the other hand the charged weak current does not
involve the right-handed electron, we must put e g in an SU(2)
singlet (similarly for the other families w™p, T™p...). The
addition of the singlets wgg,... 18 more subtle. If the neutrinos
are massless, no right-handed partner is needed. If the neutrinos
are massive, then a right-handed singlet will be necessary. At
this stage we will just add the singlets in by hand to preserve
the symmetry between charged and neutral fermions and also between
quarks and leptons.

Because the charged current raises or lowers the isospin only,
the doublet members may get imvolved. Concentrating on the electron
family only, we find
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Y + ...

charged , — _u
Ju v 1 “eL

the normal V-A current. A \J would therefore be created when an
electron is absorbed (more on this later). Vas VYy» Vg... are
called weak interaction eigenstates. The charged current is
simple in terms of them.

The neutral singlets wg,p, ... have no charged current inter-
actions. More generally, they cannot have SU(2) currents.
Furthermore, they cannot couple to the photon since they are neutral,
Hence the singletsdo not interact at all except for the possibility
of very weak interactions with Higgs bosons.

What kinds of electrically neutral objects are described by
Eq. (10)? Clearly we cannot amswer this until we have diagonalized
the mass Hamlltonian. As is well-known,mass terms are of the
form ¥ *R’ namely they mix left-and right-handed chiralities. For
the sa}('e of generality we will consider the mass Hamiltonian
without specifying the Higgs scalars which give rise to these
terms., We can distinguish three cases.

Case (1): We impose singlet number conservation by demanding that
the transformation

ic, . 1%
wgr e wors ® R +e LI (11)

leave the Hamiltounian invariant. Then the singlets Wyp cannot
couple to the doublet members vy 1,j = e,u,7... even via Higgses:
the singlets completely decouple. If only a Higgs doublet is
present, then the theory will also have another invariance equivalent
to lepton number conservation:

e e - -
| *e _ e + e e (12)
L )L

+ same for other families
leaves the Hamiltonian invarfant. As a consequence, the neutrinos
V ,... remain massless. This is the standard weak model® where
neutrinos are both weak interaction eigenstates and mass eigenstates
with vanishing mass. Since the singlet members never mix with the
rest of the world,one may as well omit them,as was done in the
original version of the theory.
Case (1i): Suppose that instead of the constraints (11) and (12)
ve simply demand that the transformation:




v v v
3 "10 e ; E _’eia E ees
Ui L}

- fa - - {a -
e +e°e H uR+e Bogree- 12)

ia ia
eR eR’ uuR + e uuk,...

leave the Bamiltonian invariant. Clearly we are demanding that
lepton number be conserved. Note, however, that we are n_o'g
demanding separate comnservation of electron mumber, muon number,
etc... We cannot have Majorana mixing in the Lagrangian

since as emphasized before they would violate lepton number
conservation,e.g.

c 21a c
¥ e re (weg)™  “p (13)
These terms are not invariant,hence not allowed. [Note: (meR)c
represents a left-handed field]. Only Dirac mass terms are
allowed. Indeed the most general mass terms for the electrically

neutral sector is of the form:

gm“ - I 'ij VoL ujk + hermitian conjugate (14)

i=e,u,t

One can easily diagonalize Eq. (14) by a unitary transformation of
the left-and right-handed fields. One learns that there are three
mass eigenstates Vy, Vo, and V,. The doublets and singlets are
linear superpositions: of these mass eigenstates:

veL - uel vu + Ue2 YL + Ue3 v3L; oo
a - - (15)
Yer "~ Ue1 V1r + UeZ Vor * U3 Vers *°*

The mass eigenstates carry the same lepton number as the singlet
members wgg... and doublet numbers vgr... In fact 1f we only had
one family, then w p would just be the right-handed neutrino.

Case (111): Let us now impose nothing. Then Majorana mixings will
occur naturally. In fact "bare" Majorana mass terms arise for the

singlets without the need for additional Higgs. (m.n)c u,g ®te...

The most general mass Hamiltonian is now given by:
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- -_— . \¢ ¢

L. ) Hij (viL) (VJL) + 51j ("ik) “iR
ij=e,u,t (16)

+ Di.j (-\’:I._L ij + (mjk)c(vﬂ.)c)+ hermitian conjugate.

The first two terms are Majorana mixings,the last one a Dirac mass
term. The diagonalization proceeds as usual by making umitary
transformations on the left-and right-handed fields. One now
finds that there are 6 Majorana mass eigenstates ¢3, 1 = 1,6

with masses my,i = 1,6. As before

Ver * Z Uei 01[.""
i=1,6
an

-

O ™ L Tgg bypoe-

i=1,6

There is no lepton number associated with the ¢;'s anymore.
Let us look at the case of one family in detail. For simplicity
we drop the subscript e. Then Eq. (16) reduces to:

Bnass = @ VL0 )"y + G ug + "0 )
+ hermitian conjugate (18)

where for simplicity we have chosen the parameters to be real.
We can diagonalize Eq. (18) simply by making a rotatiom,i.e.

vL = cosf ¢]L + 8iné ¢2L

(19)
wp = -8ing (ou)c + cosd (021')c
Choosing tan 26 = 2d/(M-m) brings (18) to the form:

Hnass et ;1 ’1 + o ;2 02 (20)

with
- € _ ,C - c_ ¢

bp T oa P ) s 8yt () =, Q2D

and



L - cosze m+ sinzﬁ M - 24 8ind cosb
(22)

m, = cosze M+ sinzem - 2d s8in® cosbd

2

Hence the mass eigenstates ¢1, ¢, are Majorana fermlons as advertised.
Two interesting limits can be an% have been considered.

(a) me0, d << M: Clearly 8 : d/M << 1. It follows from (19)

that v 1s alwmost purely made up of ¢;,while wp is almost purely

$2. The masses also reduce to

my :dz/M: 0; m, = M+ 0 (@M.

In this limit the left-handed doublet member is a "light"
neutrino,while the right-handed singlet is heavy and can never
be produced in the laboratory. Some autg\ors have argued
that this is what happens in real life.
(b) m~d~v M: In this case 8 is arbitrary and m v, This is
the case we shall consider in the sequel.

Before concluding this section,we wish to change our notation
a little to make Eq. (19) more obvious. Let us define

L (miR)c i = e,u,t (23)

We could have done everything in terms of the rather than the
wig- In case (ii) the nyy would have played the role of left-
handed antineutrinos! Eq. (19) can now be written:

v

oL cosf® sind

L

(25)

n -ginB cosf

el 2
i.e. a rotation in the left-handed field space.

For further use let us quote the expansions of n_;,... in
terms of the mass eigenstates for both case (ii) and case (i1i):

3 3
-k
Ny ™ 1 Voo (\»::)L; VoL ™ Z Uy VoL S28€ (11) (26)
a=1 a=l
6 6
"k
eL ™ z Uea (¢a)1.; VeL = z uea (oa)l. case (111) @n
a=1 a=]1

where we have used o: - ’1 in Eq. (27).

Equations (26-27) will be the starting points of the next
section leading to two different classes of neutrino oscillatioms,
80 it ts worth our while to point out the obvious one more time.
In case (1i) the left-handed singlets are antineutrinos (left-
handed!); they are superpositionsof the mass eigenstates v:,
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a = 1,3 while the electron neutrino (left-handed) is a superposition
of the conjugate fields v;. Since lepton number 1s conserved,we
cannot possibly have a transition from a left-handed singlet,

NeL 88y, to a left-handed doublet member vy . Eq. (27) summarizing
the situation in case (i1i) reveals otherwise, Because the mass
eigenstates are Majorana fermions, ¢4 = Og ,the singlets and
doublets are linear superpositions of the same objects. Hence a
transition nel > Vep 18 now at least theoretically possible. We
shall see in the next section that these tramsitions do occur:

they are the second class of neutrino oscillationms.

IV - NEUTRINO OSCILLATIONS

Let us briefly review the phenomenon of neutrino oscillations.]
For definiteness let us consider the decay 77 + y%v, . v, is a
superposition of mass eigenstates ¢_. For generality we will not
specify how many mass eigenstates there are. (It is also irrelevant
to the present discussion whether they are Majorana or Dirac
neutrinos) N

vy = Log,led (28)

[
a =]l

The masses of the ¢ _ are denoted by my. Let us assume first that
the mass differences are large compared with the energy resolutiom
of the apparatus one is using. Then 7" +u*v, would meanw + u 01
+ u+¢2 + u+03... and the decay rate would be given by the sum

of incoherent decay rates:

> uy) » ) o re - wte ) @9

Clearly the concept of a is not very useful in this case.
Assumenext that my-mg 18 much less than the energy resolution

of the experiment and that the my's are small compared to the
momenta involved. Then one produces a coherent superposition of
the ¢°'s when the pion decays,i.e, a vu:

T(r + uv) ~ ”: L (ﬂ|u+00)|2 (30)
a

Neutrino oscillations are a statement about the evolution of a

v, beam. Before delving into the details, recall that there is a

one-to-one correspondence between the weak eigenstate basis

(VeL» VuLs VeLs MNeLs MyL» NiLs+..) and the mass eigenstates

@142#43...). Consider a beam of vy created at the time t=0

by the decay of pions. At a time t later (or a distance

L = ct away) the beam will be made of vu(t):
_{Ht -ﬂ!atl

v (6)) = & v (0))= Z e ) (31)

\—




>
Ve assume that the ¢, all have the same momentum p, so that

By = (;2 + 2)1/2. Expanding the right-hand side of (3l) in terms
of lvu(O)), ve(0) Yetc... we find:

v, 0y = K v (O +E ]y (@) +... (32)

Bence the probability that a vu remains a “u is given by
2
= |k
CROIENONLN LW (33

A v, beam will contain some v,, v etc... contamination varying
vitg the distance from the source. Note that we mean oscillations
of a left-handed object into another left-handed object. Oscilla-
tions wvhich flip chirality are strongly suppressed by powers of
(I/E)2 with m a typical neutrino mass, and are not considered here.
We cap distinguish two classes of oscillations depending
upon which model describes the real world, case (1i) or (1ii), of
the previous section. (Case (1) leads to zero mass neutrinos,
hence no oscillations,as is obvious from Eq. (31)).
Case (11): Recall that there are three mass eigenstates vj,v2,v3
wvhich carry lepton number +1 and are Dirac neutrinos v‘i ¢ vy ete...
The expansion of the singlets and doublets in terms of the mass
eigenstates is given by Eq. (26). Clearly,in the evolution of a
neutrioo beam only the following oscillations are possible:
>

(34)

n b ad

el I"ul. ntl.

(35)

v -

el vuL it “t

L
These oscillations are oscillations of the first class. The
oscillations (34) will never be seen experimentally since the
singlets ny; are never produced by charged current reactions. The
flavor ouci&laticms (35) amougst left-handed neutrino species
(hence also amongst the "normal" right-handed antineutrinos vep,
V4yR» V¢R) have become popular againm, although the experimental
evidence is dubious at best.

Because of lepton number conservationm, singlet-doublet trans—
itions ngy ++ vy etc... cannot take place here.
Cage (M.ts: The presence of Majorana mixings in the Lagrangian
forbids the existence of a conserved lepton number, There are
now six Majorana mass eigenstates §_, a = 1,6, ¢S = ¢.. The
expansions of the weak eigenstates $a terms of mass eggenstates
are given in Eq. (27). Since the left-handed singlets are "made
of the same constituents" as the neutral members of the left-handed
doublets, we can now have two classes of oscillations. As in the
previous case we can have:
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1‘t class oscillations.

- -
neL n n

However,we can also have:

A
veL e neL

-
veL nuL

v e n (36)
nd
. | 2 class oscillations.

The second class oscillations (36) mix singlets with doublet members
of the same chirality. Care must be exercised here as the coucept
of lepton versus antilepton is not defined. Although state-

ments are sometimes made that 204 class oscillations are neutrino-
antineutrino oscillations, these statements are loose parlance

at best.

To conclude this section,we emphasize that the more natural
case (1i1), with no artificial constraints placed on the model,
leads naturally to two classes of oscillations. In the next section
we take a brief glance at the phenomenology of these oscillations.

V - PHENOMENOLOGICAL IMPLICATIONS OF SECOND CLASS OSCILLATIONS

A detailed analysis of the phenomenological consequences of
second class oscillations 1s extremely difficult. In the simplest
realistic case of three families there are six mass eigenstates
(a 6 x 6 unitary mixing matrix) and five mass differences. Clearly,
both first and second class oscillations occur concurrently.
Disentangling their effects will not be an easy task experimentally.
The key point in isolating second class oscillations is that the
left-handed singlets Mer® "ur? oL do not interact (we neglect

Higgs interactions). When an incoming neutrino, 8aY Vay,

oscillates into a singlet,it cannot ianteract until the singlet
oscillates back into a v_,, Vv L OF V.p.- The net effect is an
oscillation of the absolute crogs-sections as a function of distance.
Although possible in principle, a precise measurement of absolute
(charged and neutral) cross-sections appears very difficult in
practice. It i{s unfortunate that this effect 18 the only possible
way to confirm or rule out the existence of second class oscillatioms.
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We now turn to possible phenomenological implications of
second class oscillations for current experiment.

Solar: Lepton number violating oscillations have the capability
of explaining the deficiency im the ratio of observed to expected
solar neutrinos. With first and second class oscillations among
three families, the minimum probability for v, + V. transitions is
1/6, as opposed to 1/3 for first class oscillations only.

Reactor: The cross sections for an initial antineutrino beam
scattering on proton and deuteron targets indicate depletions in
occ(p), Gcc(d) and ucc(d)/aNC(d) but not (at the = 20% uncertainty

level) in onc{d). To explain both the dgc and °CC/°NE results,
first class oscillations are required with Sw® = 1 eV<.

Beam dump: Charged and neutral current events are produced by
prompt neutrinos created in the dump. Since the prompt neutrinos
originate from decays of charmed particles, identical Vv, and Vv,
spectra and numbers are generated. The charged and neutral current
interactions of the prompt neutrinos are measured in bubble chamber
and counter experiments at CERN at a distance L = 800-900 m down-—
stream.

In the bubble chamber experiment, the measured e/u ratio is

R(e/u) = 0.48t8'i: . Such deviations of the e/u ratio from unity

may indicate a P(v, > va) depletion arising from oscillations.
For the CERN beam dump L/E = 0.01 m/MeV, so the mass scale of the
oscillations would be ém“ = 100 eV2, To discuss such oscillations
we assume a prompt neutrino beam with equal parts of vgq, and vuL,
neglecting any antineutrino contributions for simplicity.

For second class oscillations of the v, family alone, the efu
ratio 18 given by

R(e/u) = (B(v, * v )0.0)/(90c) 3N

where occ 18 the inclusive production cross section for e or u and
() denotes a spectrum average. For first class oscillations

Vo ™ Vgr Ve * Vg (stringent experimental limits exist om vy * Ve
and v, * V. oscillations in this L/E range), the corresponding
prediction is

T
(Pv, * V)0 )+ 0.17 R, ~ V)00 (38)

R(e/u) = ; p 3
“’cc) +0.17/p(v, > vT)acc)

where oéc i{s the inclusive T cross section. For comparable mixing
in the two classes, the predictions in Eqs. (37) and (38) are
gimilar. One can discriminate experimentally between the classes
of oscillations by ascertaining whether v is produced.

The beam dump counter experiments measure the ratio N(Ouw)/N(1uw)
of muonless to single muon events. With second class oscillations
of the Ve family, the prediction is
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N(OW)/N(LW) = [ Q1 + POy, + v ))ag. Y+ BV, + v )05 1/(9:0)
(39)

in the limit of perfect acceptance.
for first class oscillations is

The corresponding prediction

nowy | 20n0 (RG> v )9 Y 0.83 (POv, + VoL

NQ
AW (g M 0.17 (R(v, + v o 3

(40)

Taking comparable mixing in the two classes (and hence similar

R(e/n) predictions), the value of N(Ou)/N(lu) is significantly lower
for second class oscillations. A detailed analysis with experimental
cuts could thereby differentiate between first and second class
oscillations in this L/E range on the basis of measured R(e/u)

and N(Ou)/N(lu) values. Still other alternatives are simultaneous
first and second class oscillations or first class oscillations
involving additional families.

We shall not discuss other possible experiments to detect
oscillations. Of these only modulations of scattering seem
feasible. We refer the interested reader to the talk of B. Kayser
in these proceedings.

VI - CONCLUSIONS

I have tried to convince the reader that if neutrinos are
massive, the mass eigenstates will naturally be Majorana neutrinos
unless extraneous symmetries are imposed. The presence of Majorana
mass mixings enriches the phenomenon of neutrino oscillations:
left-handed neutrinos can now oscillate into left-handed, non-
interacting singlets, the second class oscillations. Quite frankly,
these oscillations will make the interpretation of experimental
data extremely difficult.

To conclude, let me advertise a heretical point of view. Im
the original SW-GIM model neutrinos remained massless in quite an
artificial way. 1Is it possible that there are good theoretical
reasons for neutrinos to remain massless? It should be clear
from the above that one must look outside the simple model for such
reasons, possibly supersymmetry or more exotic theories. That such
an enterprise may not be without merit is summarized in an old
French proverb, particularly suited to a meeting in the Northerm
Woods of Wisconsin: "Il m'a dit qu'il ne faut jamatis vendre la
peau de l'oure qu'on ne l'ait mis par terre.”
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APPENDIX

For convenience I will summarize the basic properties of
Msjorana fermions in this appendix. Rather than study Majorana
particles in the Majorana basis, I will use the conventions of
Bjorken and Drell (Relativistic Quantum Mechanics, Me~Graw Hill,
1964, Appendix A). Since we are dealing with self-conjugate
fermions in gauge theories, this latter choice is actually better-
suited for calculations.

A Mgjorana fermion § is a self conjugate fermiomn, i.e.

e (D)

The charge conjugation matrix C = 1yzyo satisfies C = -C-l =
-ct = -8, C y# C1 = QY. Charge conjugation is an involution,i.e.

@9 = o%@H" = o ¥em = ¢ (A2)

Note that the definition (Al) is not the most general. We could
have introduced an arbitrary phase in the definition,i.e.:

wc - ein Y. The phase choice n=0 is usually made for comvenience.

See Refs. 1,2 for details.
Assume now that ¥ 1s an arbitrary four-component spinor. Then
¥¢ 18 also a four-component spinor. Defining

c
¥F+v
Yy-v
v, = = Y, = -1 ——— (a3)
R 3 1 ¥
one finds (use A2)
b + 19
R 1 c - ©
YE e TN T (a6)
1f ¥ describes a particle of mass m, then
<. 1 1 -
VLAY = o ld v 45 v 1B ¥,
(A5)

—_ 1 - )
m‘l"l‘-imwnwn-#zmvblwl

vhere we have used Eq. A6 below. Hence a four-component Dirac
field 1s equivalent to a pair of degenerate Majorana fields. The
Majorana fields ¥y and ¢; are two-component objects, as is obvious
from (Al). It is clear ¥rm (A3, A4) that the decomposition into
Majorana fermions {s like going from complex to real objects, with
complex conjugation replaced by charge conjugation. The factors
of 1/2 in AS are necessary to have the "real" fields normalized
correctly.

The following identities hold for any two Majorana anti-
commuting fermions ¢ and x, 1.e. ¢ = ¢ and x€ =x.
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(1) VX = x¥

(11) W = ™y

(i11) WX = e

(1v) Vix = X )
™ Wk = - XM

() vy = -xdVy

In deriving (A6, iv-v) integration by parts was used and the surface
terms were neglected. Furthermore, it must be temembered that ¥

and X are anticommuting c-numbers,l.e. X¥) = -b x. Eq. (A6)
summarizes all properties of Majorana fermions. In p§rt1cular
A6(11) guarantees that they cannot couple to the electromagnetic
field, A6(vi) that a Majorana fermionm has no magnetic moment.

When writing down Feynman rules one must remember that Majorana
fermions are real. The symmetry numbersare the same as for a

real spinless boson.
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ABSTRACT

Neutrino mass patterns for one family with both left- and
right-handed neutrinos are discussed.

Talking about neutrino masses is very much like guessing the
solution to a puzzle without enough information. Different people
may guess different things. What I can do is to say something
based on my tastes.

If there are both neutrinos in the doublet and sinslet of the
Weinberg-Salam Model,1 the most general mass Lagrangian 3,4 for
one family of neutrinos is:

L= -ufa Sgv, + a0SON, + B0y, + € HOTN T+ hee ()

where vy is the doublet neutrino which appears in the weak charged
current

eLYuVL
and vp is the singlet partner of vy with the same lepton number; V¢
is

(2)

[ 1

ety -CGT,C=iYZYO,CT--C )

the chirality eigenstates are defined as

1%y
S - +
vp 7 VLt ) Y
R R R R
1y
5 L
—2— \)R = .0 . (4)
We have

- € .
v = () o)y - (s)
R R R

We notice that because of fermi statistics, we have

(vc)RvL - (GZ)cvR - -v{ Cv =0. (6)
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