references

1. C. S. Wu, these proceedings, page \qquad (1980)
2. S. P. Rosen, these proceediags, page \qquad (1980)
3. Douglas Brywan and Charles Picciotto, Rev. Mod. Phys. 50, 11 (1978).
4. H. Primakoff and S. P. Rosen, Rep. Prog. Phys. 22, 121 (1959); Phys. Rev. 184, 1925 (1969); Pkys. Rev. D5 1784 (1972).
5. T. Kirsten, O. A. Schaeffer, E. Norton and R. W. Stoner, Phys. Rev. Lett. 20, 1300 (1968); T. Kirsten, W. Gentner and O. A. Schaeffer, $\overline{2}$. Phys. 202, 273 (1967).
6. B. Srinivasan, E. C. Alexander, Jr., and O. K. Manuel, Economic Geology 67, 592 (1972); B. Srinavasan, E. C. Alexander, Jr., R. D Beaty, D. Sinclair, and O. K. Manuel, Economic Geology, 68, 252 (1973); E. W. Hermecke, O. K. Manuel and D. D. Säbu, Phys. Rev. C11, 1378 (1975).
7. T. T. S. Kuo and G. E. Brown, Nucl. Phys. All4, 241 (1968).
8. W. T. Baldridge and J. P. Vary, Phys. Rev. C14 2246 (1976).
9. H. Behrens and J. Jänecke, "Numerical Tables for Beta-Decay and Electron Capture," Springer-Verlag, Berlin (1969).
10. R. K. Bardin, P. J. Gollon, J. D. Ullman and C. S. Wu, Nucl. Phys. A158, 337 (1970).
11. M. Moe, U. C. Irvine reprint (1980); Phys. Rev. C22, to be published.
12. J. D. Vergados, Phys. Rev. C13, 865 (1976).
13. E. Fiorini, et al., Phys. Lett. 25B, 602 (1967).
neutrino mixing in grand unified theories
L. Wolfenstein

Carnegie-Mellon University, Pittsburgh, PA 15213, and Lawrence Berkeley Laboratory, ${ }^{\dagger}$ University of California Berkeley, CA 94720

ABSTRACT

Possible forms of the neutrino mass matrix that might appear in grand unified theories are discussed at the $\operatorname{SU}(2) \times U(1)$ level. Two models are discussed, one based on a heavy Majorana singlet derived from So (10) and one due to Zee based on a charged heavy scalar boson singlet inspired by $\mathrm{SU}(5)$. The patterns of neutrino masses and mixings are very different in the two cases.

It has been noted in many papers that it is quite natural for 1 neutrinos to acquire a smal $\}$ mass in grand unified theories (GUT). ${ }^{1}$ By fairly general arguments ${ }^{2}$ this mass has the order of magnitude

$$
\begin{equation*}
m_{v}-(\text { light mass })^{2} / M \tag{1}
\end{equation*}
$$

where the "light mass" is of the order of charged lepton or quark masses and M is a very heavy mass. Because of the small magnitude of m the best hope for observing this mass may be in the phenomenon of neutrino oscillations. For oscillations to occur, however, not only must there be a non-zero neutrino mass but the mass eigenstates must involve significant mixing among the neutrino flavors. In this talk the major emphasis is on the mixing that might occur in grand unified theories.

Our approach is to look at the neutrino mass matrix at the
$S U(2) \times U(1)$ level. We assume that the only light particles
(masses \& M_{w}) are those that are in the standard model. In particular, we as sume that there are no light neutral lepton singlets so that the neutrino mass matrix necessarily has a Majorana form (connecting v_{L} and \bar{v}_{R}) with $\Delta L=2$ and $\Delta I_{3}=1$. If $\operatorname{SU}(2)$ is broken only by the vacu-夏 expectation values of Higgs doublets, the lowest dimensionality interaction that can lead to the neutrino mass matrix is given by the form ${ }^{2}$

$$
\begin{equation*}
f_{a b a \beta} \psi_{a L}^{i} c \psi_{b L}^{j} \phi_{a}^{k} \phi_{B}^{l} \varepsilon_{i k} \varepsilon_{j l}+h . c . \tag{2}
\end{equation*}
$$

where a, b are lepton family indices; a, B distinguish different Higgs doublets; i, j are $\operatorname{SU}(2)$ indices which are sumped over; and C is the Dirac charge conjugation matrix. The neutrino mass matrix is obtained by replacing each by its vacuum expectation value

$$
\begin{equation*}
\sum_{a B} f_{a b a B} \psi_{a L}^{v} c \psi_{b L}^{\nu}\left\langle\phi_{a}^{0}\right\rangle\left\langle\phi_{B}^{0}\right\rangle \tag{3}
\end{equation*}
$$

${ }^{\dagger}$ Summer Visitor

From the point of view of GUT, (3) arises as an effective interaction from a diagram of the type indicated schematically in Fig. (la), where the loop includes one or more heavy particles. The order-ofmagnitude estimate of Eq. (1) follows because $\langle\Phi\rangle$ times the Higgs Yukawa coupling is proportional to a light mass and $f_{\text {aba } \beta}$ is proportional to M^{-1} by dimensional arguments. ${ }^{2}$ This result is not confined to GUT but holds in any theory that reduces to the standard SU(2) $\times U(1)$ at "low energies". Thus M need not be the unification mass, but rather represents the mass scale of some interaction beyond $\mathrm{SU}(2) \times \mathrm{U}(1)$. If the "light mass" is of the order of 1 Gev , it follows that the search for m_{v} around 1 ev probes a mass scale M of order $10^{9} \mathrm{Gev}$.

The simplest realization of Fig. (1a) occurs in the $S O(10)$ theory where the loop contracts to a single heavy neutral lepton line, ${ }^{3}$ Fig. (lb). This heavy lepton N is an $\operatorname{SU}(2)$ singlet and it is assumed that in some way it acquires a large Majorana mass, which is the origin of the change in lepton number by 2 . The neutrino mass matrix m may be calculated from Fig. (lb) using perturbation theory

$$
\begin{equation*}
m=\tilde{\mu}^{v}\left(\bar{m}^{M}\right)^{-1} \tilde{m}^{v^{+}} \tag{4}
\end{equation*}
$$

where \bar{M}^{v} is the matrix (in generation space) connecting v to N and where M is the matrix (in generation space) connecting the matcices here are in the representation in which the charged leptons are diagonal. In the discussion of the $S O(10)$ theory the charged leptons are described by a mass matrix M^{ℓ}, which must be diagonalized ${ }^{4}$ by a unitary transformation U_{e}. Therefore, Eq. (4) may be written

$$
\begin{equation*}
m=U_{e} M^{\nu}\left(M^{M}\right)^{-1} M^{v^{+}} U_{e}^{+} \tag{5}
\end{equation*}
$$

where M (without the tilde) represents a matrix in the representation before the leptons are diagonalized. If M^{N} is diagonalized by a unitary transformation U_{v}

$$
\begin{equation*}
m=U_{e} U_{v}^{+} M_{d}^{v}\left(M^{M}\right)^{-1} M_{d}^{v} U_{v} U_{e}^{+} \tag{6}
\end{equation*}
$$

where M_{d} is the diagonal form of M^{ν} and

$$
\begin{equation*}
\bar{M}^{M}=U_{V} M^{M} U_{v}+ \tag{7}
\end{equation*}
$$

If \bar{M}^{M} were proportional to the unit matrix, then the neutrino mass matrix would be diagonalized by the matrix $U_{e}{ }^{+} U_{v}$. In the $S 0(10)$ theory with a single Higgs representation ${ }^{5}$

$$
\begin{align*}
& M^{\ell} \propto M^{D}, \quad M^{V} \propto M^{U} \tag{8a}\\
& U_{e}=U_{D} \quad, \quad U_{V}=U_{U} \tag{8b}\\
& U_{e}+U_{V}=U_{D}+U_{U}=U_{X M} \tag{8c}
\end{align*}
$$

where D and U refer to up and down quarks and $U_{W M}$ is the KobayashiMaskawa matrix. If this were the case, the following qualitative consequences would be expected.
A. Neutrino mixing angles are given by the off-diagonal elements of the Kobayashi-Maskawa matrix U_{KM}, which are expected to be fairly small. ${ }^{6}$
B. The $v_{e}-v_{\tau}$ mixing would be expected to be very small.
C. The neutrinos would have a mass hierarchy with their masses proportional to the square of the generation mass; thus $m\left(v_{\tau}\right)$ would scale as m^{2} and $m\left(v_{e}\right)$ as $m_{u}{ }^{2}$. If $m\left(v_{\tau}\right)$ is less than the cosmological Iimit ${ }^{7}$ of about 50 ev , this scaling gives

$$
\begin{align*}
& m\left(v_{\mu}\right)<0.3 \text { e.v. } \tag{9a}\\
& m\left(v_{e}\right)<10^{-4} \mathrm{e.v} \tag{9b}
\end{align*}
$$

Since the oscillation length is inversely proportional to the differences of the squares of the masses, oscillations between v_{u} and v_{e} would thus have a very long oscillation length, a factor of 10^{4} larger than that between v_{μ} and v^{\prime}

Ketaining the single Higgs rélations of EqS. (8), we now ask whether significant additional mixing can occur from the form of the Majorana mass matrix M. Combining Eqs.(6) and (8) we write

$$
\begin{align*}
& m=U_{\mathrm{KM}}{ }^{+} \Delta \mathrm{U}_{\mathrm{KM}} \tag{10a}\\
& \Delta_{\mathrm{ab}}=\mathrm{m}_{\mathrm{a}} \mathrm{~m}_{\mathrm{b}} \sum_{\mathrm{c}=1}^{3} \mathrm{v}_{\mathrm{ac}}+\mathrm{V}_{\mathrm{cb}}\left(\mathrm{M}_{\mathrm{c}}\right)^{-1} \tag{10b}
\end{align*}
$$

where m is the up-quark mass for generation $a, V_{c b}$ is the unitary matrix diagonalizing \bar{M}^{M}, and M_{c} are the masses of che heavy Majorana particles. For the case of two generations (e, μ), $V_{a c}$ is expressed in terms of one mixing angle ϕ and

$$
\left(\begin{array}{lc}
\left|\frac{\cos ^{2} \phi}{M_{1}}+\frac{\sin ^{2} \phi}{M_{2}}\right| m_{u}^{2} & \sin \phi \cos \phi\left(\frac{1}{M_{1}}-\frac{1}{M_{2}}\right) m_{u}^{m_{c}} \tag{10c}\\
\sin \phi \cos \phi\left(\frac{1}{M_{1}}-\frac{1}{M_{2}}\right) m_{u} m_{c} & \left(\frac{\sin ^{2} \phi}{M_{1}}+\frac{\cos ^{2} \phi}{M_{2}}\right) m_{c}^{2}
\end{array}\right\}
$$

The neutrino mass matrix \mathbb{M} is diagonalized by the matrix $U_{K M} U_{\Delta}$ wher U diagonalizes Δ; the neutrino masses are given by the eigenvalues f Δ. From Eqs. (10) it is seen that the mixing angles needed to diagonalize Δ tend to be proportional to the generational mass ratios agonalize Δ tend to be proportional to the generational mass ratios (such $25 \mathrm{~m}_{\mathrm{u}} / \mathrm{m}_{\mathrm{c}}$) unless the Majorana mass matrix takes a very special form. This means that in general U_{Δ} is very close to unity. In or
der to make all the mixing angles entering U_{Δ} large it is necessary to have the extreme conditions

$$
\begin{equation*}
M_{a} \propto m_{a}^{2} \quad \text { and } \quad V_{a c} \propto m_{a} / m_{c} . \tag{11}
\end{equation*}
$$

With the conditions (11) neutrino mixing angles would be large and none of the qualitative results (A)-(C) above would need to be true. However, we cannot imagine a theory that would yield these conditions.

A significant departure of U_{Δ} from unity can be obtained with the less extreme assumptions

$$
\begin{equation*}
M_{a} \propto m_{a} \quad \text { and } \quad v_{a b} \propto\left(m_{a} / m_{b}\right)^{1 / 2} \tag{12}
\end{equation*}
$$

Combining Eq. (12) with Eq. (10b) and diagonalizing Δ we find that

$$
\begin{equation*}
\left(U_{\Delta}\right)_{a b}=\left(m_{a} / m_{b}\right)^{1 / 2} \tag{13}
\end{equation*}
$$

and that neutrino masses scale as the generation masses rather than the square of the masses. For the case of two generations if we substitute explicitly in Eq. (10c)

$$
\begin{equation*}
M_{1} / M_{2}=a m_{u} / m_{c}, \phi^{2}=a^{\prime} m_{u} / m_{c} \tag{14}
\end{equation*}
$$

then we find

$$
\begin{align*}
& \theta_{\Delta}=2\left(a^{\prime} m_{u} / m_{c}\right)^{1 / 2}\left(a+a^{\prime}\right)^{-1} \tag{15a}\\
& m\left(v_{e}\right) / m\left(v_{u}\right)=\left(m_{u} / m_{c}\right) a\left(a+a^{\prime}\right)^{-2} \tag{15b}
\end{align*}
$$

where θ_{Δ} is the rotation angle (assumed to be small) needed to diagonalize Δ. In this case the neutrino mass matrix \mathscr{M} is diagonalized by a Cabibbo-like matrix in which the usual Cabibbo angle θ^{c} is increased or decreased by θ_{Δ}. Since θ_{Δ} is less than θ_{c}, this ${ }^{c}$ means that the mixing between v_{e} and ν_{μ} remains small although not exactly given by the Cabibbo angle. In the case of three generations there given by a somewhat larger deviation from the KM matrix because the mixing between v_{μ} and v_{τ} may be modified by a factor ($\mathrm{m}_{\mathrm{f}} / \mathrm{m}_{t}$) ${ }^{1 / 2}$ as indicated by Eq. (13), but the $v_{e}-v_{\tau}$ mixing would be expected to remain very small.

The assumption of a single Higgs representation giving the , light fermion masses in $\operatorname{SO}(10)$ yields some incorrect mass relations. 5,8 A scheme involving two different Higgs representations 10 Thas find that plied to the neutrino mixing problem by hama et al. the ining angle between v_{μ} and $v_{\text {is }}$ is given approximately by
$\tan ^{-1}\left[3\left(m_{c} / m_{t}\right) / 2\right]$, a value that is probably much larger than the mix ing given by $U_{K M}$. On the other hand the mixing angle between v_{e} and v_{y} becomes even smaller and the mixing angle between v_{e} and v_{τ} remains extremely small. The neutrino masses have a hierarchical relation here given by

$$
\begin{equation*}
m\left(v_{e}\right): m\left(\nu_{\nu}\right): m\left(\nu_{\tau}\right)=\left(m_{u} / 9\right)^{2}:\left(9 m_{c}\right)^{2}: m_{t}^{2} \tag{16}
\end{equation*}
$$

These results are all based on the assumption that the Majorana mass matrix M^{M} is not significantly different from the unit matrix. As for the case discussed above, the results could be modified significantly if M^{M} were described by either Eqs. (11) or (12).

In our discussion so far we have made no assumptions about the origin of the Majorana mass matrix M. Our major purpose has been instead to emphasize the special features that M^{M} must have in order to seriously change conclusions about neutrino mixing il A particularly interesting theory of M^{M} has been given by Witten, 11 who assumes the matrix vanishes at tree level but is non-vanishing as a result of radiative corrections. This case has been discussed in a number of recent papers. 12 Because the diagrams contributing to M^{M} involve the Higgs couplings connecting the $\operatorname{SU}(2)$ singlet N to the light fermions, it is found that M^{M} is closely related to M^{U}. As a result, the neutrino mixing and masses tend to have a pattern that agrees with our discussion following Eq. (12).

All the different discussions of the $\mathrm{SO}(10)$ scheme using Fig. (lb) yield the following common features:
A. Neutrino mixing angles involving v_{e} are small and those connecting v_{e} and v_{τ} are very small.
B. Neutrino masses have a hierarchical structure such that
$m\left(v_{e}\right) \ll m\left(v_{\tau}\right)$. If $m\left(v_{\tau}\right)<50 \mathrm{ev}$, the mass of v_{e} is less than .01 ev .
C. The shortest oscillation length and probably the largest mixing angle is that connecting ν_{μ} and ν_{T}.

While these features are not so constraining as those listed after Eq. (8), they still rule out many recent suggested patterns for the neutrino mass matrix. To avoid these conclusions, relatively extreme assumptions must be made for the Majorana mass matrix such as those of Eq. (11).

In addition to the graph of Fig.(1b) one might expect there would be complicated graphs within the $\operatorname{SO}(10)$ model that could not be reduced to the form of Fig.(lb). In particular, in the witten model the same general graphs that produce the Majorana mass M^{M} must make a direct contribution to the neutrino mass matrix. We have assumed here that these other graphs are much smaller in magnitude. This has been demonstrated for the Witten model. ${ }^{12}$

To find a realization of Fig.(la) without a heavy fermion singlet, we can introduce a heavy boson singlet. If this singlet is to provide a $\Delta \mathrm{L}=2$ interaction, it must be singly (or doubly) charged. This is because $\Delta L=2$ involves the change of a lepton to an anti-lepton and therefore a change in weak hypercharge; since $\Delta I_{3}=0$ for a singlet, this requires a change in leptonic charge. The simplest example we have found is the diagram Fig. (lc) introduced by Zee. ${ }^{3}$ The singlet boson h^{+}may be considered as the one colorless component of a 10 of SU(5). The neutrino mass matrix takes the form ${ }^{14}$

$$
\begin{equation*}
m_{a b}=f_{a b}\left(m_{b}^{2}-m_{a}^{2}\right) / M \tag{17}
\end{equation*}
$$

where $f_{a b}$ is the $\Delta L=2$ Yukawa coupling of h^{+}, which is necessarily antisymetric and therefore off-diagonal, and M is a somewhat complicated expression depending on the h^{+}mass. To obtain Eq. (17) we assumed that the SU(2) doublet Higgs Yukawa couplings conserve lepton
flavor. This gives the interesting result that the diagonal elements of $\mathscr{M}_{\text {ab }}$ vanish, guaranteeing a large amount of mixing.

The crucial difference between Eq. (17) and Eqs. (10) lies in the fact that the (light mass) ${ }^{2}$ factor enters as the difference of the squares of the masses instead of the product of the masses. Assuming m_{e} / m_{1} and m_{2} / m_{T} are very small, Eqs. (10) tend to give small mixing m_{e} / m_{μ} and m_{μ} / m^{2} are very small, EqS. and a hierarchy of neutrino asses. In contrast, in this limit, Eq. (17) gives two almost degenerate mass eigenstates, each containing 50% of v_{τ} and 50% a mixture of a v_{e} and v_{μ}, and one mass eigenstate close to zero mass contain ing the other mixture of v_{e} and $v_{\mu} .14$ This means there is one rel tively short oscillation length that mixes only v_{e} and v_{μ} with an atively short oscillate and one relatively long oscillation length
 that thoroughly mixes v_{τ} with some combination of v_{e} and v_{μ}

A particularly interesting feature of the Zee model is that as a esult of the near degeneracy it is possible for a neutrino with a mass to have an oscillation length much larger than E / m^{2}. An exass to have an osciliation length much larger $m\left(v_{\tau}\right)=20$ ev with ample i have consiength between v_{e} and v_{τ} characterized by the oscillation length between e e ${ }^{2}: 0.5 \mathrm{ev}^{2}$. In this example there would be a much shorter oscilation characterized by $\Delta m^{2}=400 \mathrm{ev}^{2}$ between $v_{\text {a }}$ and v_{u}, but I have judiciously and arbitrarily chosen the mixing angle to be small.

In Fig. 2 we show the neutrino mass patterns for the two models, assuming for illustration that the heaviest neutrino has a mass between 10 and 100 ev . Some interesting comparisons between these two patterns are listed in Table 1.

I an indebted to K. Tanaka, G. Branco, S. L. Glashow, R. Cahn and M. Chanowitz for discussions. This research was supported in par by the High Energy Physics Division of the U. S. Department of Energy under contracts W-7405-ENG-48 and EY-76-02-3066.

REFERENCES

1. F. Wilczek in Proc. of the 1979 Lepton-Photon Conference, p. 437 (Fermilab), (T. Kirk and H. Abarbanel (eds.))
arbieri et al., Phys. Lett. $\frac{90 B}{}$, 91 (1980).
E. Witten, Harvard Niv. Letters 43, 1566 (1980).
2. S. Weinberg, Phys. Rev. Letters 43 , 1566 (1980). . M. Gell-Mann, P. Ramond, and R. Slansky, unpublished. Eq.(1) first derived for this case.
3. For simplicity we have assumed the various 3×3 matrices M are sation. This is not essential for any of our results.
M S Charitz et al., Nucl. Phys. B128, 506 (1977).
4. M. S. Chanowitz et al. Nucl. be small except possibly the 23 and
5. All the elements are known to be small except possibiy the 23 and 32 elements, which here mix v_{p} and v. These elements are urther information on B decay.
S. S. Gerstein and Ya B. Zeldovich, Zh. ETF Pisma 4, 174 (1966) [JETP Letters 4, 120 (1966)].
R. Cousik and J. McLelland, Phys. Rev. Letters 29, 669 (1972).
. H. Georgi and C. Jarlskog, Phys. Lett. 86B, $297 \frac{29}{(1979)}$.
6. J. A. Harvey et al., CalTech preprint 68-758 (1980).
7. S. Hama et al., Ohio State preprint DOE/ER/01545-282 (1980) The very small value of θ_{1} given in this reference refers to the matrix U_{1}. As indicated in Eq. (6) the angle of interest comes matrix $U_{V_{i}}$ As indicated ${ }^{\text {In }}$ the theory used 8,9 the matrix U_{e} has a mixing from $U_{e} U_{v}^{+}$. In the theory used, angle given by (m_{e} / m_{μ}) ${ }^{1 / 2}$. Thus the conclu between v_{e} and v_{μ} is very small is cor
E. Witten, Phys. Lett. $91 B, 81$ (1980).
8. E. Witten, Phys. Lett. 91B, ${ }^{81}$ (1980) . 12. G. Branco and A. 1980/07-255.
K. Kanaya, KEK preprint KEK-TH12
K. Kanaya, KEK preprint KEK-TH, KEK preprint KEK-TH15
9. A. Zee, Phys. Lett. 93B, 389 (1980).
10. L. Wolfenstein, Nucl. Phys., to be published.

Table 1
Comparison of the two models

Feature

Heaviest neutrino
$m\left(v_{e}\right)$
Shortest oscillation length

Amount of mixing
Mixing of v_{e}
Ratio of oscillation lengths

Zee $\operatorname{SU}(5)$:

ν_{τ} and $\left(\nu_{\mu}, \nu_{e}\right)$ mixture
mixed heavy and light

$$
\nu_{\mu} \not \vec{*}_{e}
$$

Large
Can be large
$m_{\tau}{ }^{2} / m_{\mu}$

SO(10)
very light

$$
v_{\mu} \neq v_{\tau}
$$

Probably small
very small
$m_{\tau}^{2} / m_{\mu}^{2}$

Fig. 1. Neutrino mass matrix diagrams. Dashed lines are Higgs doublets $\$$ and x is a vacum expectation value. (la) is doublers diagram with an undefined loop. In (lb) N is a general diagram with an undefined loop. heavy Majorana particle and the charged anti-lepton and h^{+} mass insertion. in

Fig. 2. Comparison of the two models. The absolute mass scale is arbitrary for each model; the main point is the ratio of the masses, which is shown for typical parameters of the the mods. Above each level the mixture corresponding two models. Above each level seare arbitrary parameters to the level is given. c is probably but not necessarily such that $c^{2}+s^{2}=1$. ε is probably but not necessarily small.

