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ABSTRACT 

Because of the strong atlraction between a monopole and antimonopole produced 

as a pair, there is a strong likelihood that a pair which is produced will tend to become 

bound. In a nonrelativistic model, it is estimated that the ratio of bound-state to free
1 0 

pair production is 10 for production of a low-lying state and decreases rapidly for 

higher lying states. This prediction is independent of the production mechanism of the 

monopoles. 

1
It has been suggested that the production of free monopole pairs may be greatly 

suppressed with respect to the production of a bound monopole-antimonopole state 

(which, following S. Frankel, we will c all monopolonium). The physical reason for 

this suggestion can be seen quite easily in the following way: consider a monopole

antimonopole pair with SOme small separation r O. Then the force between monopoles 

is 
2 2 

F=g!r ' O 

2
where g2, the magnetic charge, is given by g2 e - 1, and hence the force tending to 

bind the monopoles is very strong. 

In addition to the energy needed to create the monopoles, a large kinetic energy 

will also be needed if the monopoles are to be able to separate from each other and be 

seen as free particles. Thus, one would see monopolonium states at energies just 

past the threshold for monopole production, and free monopole s would be copiously 

produced only at much higher energie s, In this note, we will try to quantify the con

clusion and make a numerical estimate of the relative probability of free-pole produc

tion vs monopolonium production near threshold. 

Let us begin our calculation by considering a reaction 

(1 ) 
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in which a projectile (P strikes a target (P producing hadrons (P and a free mono
1) 2) 3) 

pole-antimonopole pair with momenta K and q , Let the amplitude for the reaction be 

A (P P P K, q). In this reaction, the final-state interaction between the poles
1, 2, 3, 

is neglected. 

Now consider what happens when the final-state interaction is included. We now 

have a reaction like 

(2) 

1
where V represents the interaction between the poles, and K is the momentum of the 

final state of the pole-antipole system. The amplitude for this process will be C (Pl' 

P	 P K, q, K
11.2,	 3,
 

In order to compare these two processes, it will be necessary to make some
 

simplifying assumptions. 

Assumption 1: In reaction (2), the monopoles are on mass shell and, in fact, can 

be treated as free particles which are created, travel a while, and then interact. In 

this case, 
1	 1

C (P P P K, q, K ) = A (P P P K, q) B (K, q, K ), (3)
1, 2, y 1, 2, y 

where B represents the amplitude which described the final monopole interaction. 

Assumption 11: The poles move slowly, so that the amplitude B can be calculated 

nonrelativistically. i. e .. 

Bn(K, q, K)~ <..v(p) IV(p) lei(K-q).p >, (4) 

where p = r 1 - r 2 = separation of the poles, V (p) =i I p is the potential between the 

poles, and w (p) is the final state of the pole pair. Note that since we are dealing with 

a Coulomb interaction, ..v is known exactly, 3 and Eq. (4) is good to all orders in g. 

These two assumptions mean that the calculation presented here has, at most, 

a heuristic value, since the interaction between the monopoles is so strong that treat

ing the intermediate monopoles in (2) as free is surely not justified, and the life
1

time of monopolonium is so short that the description of the state by a Coulomb wave 

function is probably not justified. We have, however, gained the enormous advantage 

of making the ratio of bound to free production independent of the mechanism for 

creating the monopole pair, as we shall see below. Thus, our calculation will depend 
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only on the known force between monopoles and the known bound states of the system 

and not on the assumptions about the coupling of the poles to hadrons or other particles. 

The amplitude B depends only on K - q , If we assume that A depends only on 

K + q, and is independent of K - q, then the relative probability of making monopolonium 

in a state n instead of a free pair is 

3(K_q)/IAI 2 
dP1" d(K+q) /I B I2

d
n 

phase space
R 

n 3(K-q).fIAI 2 
dP1 ... d (K+').)/d


phase space
 

where (K-q)max is the maximum value allowed for IK-q I by kinematics. 

The problem reduces to calculating B We note already that we expect a large
n. 2

enhancement of bound - state production because of the factor g which appears in the 

potential. In addition, the bound-state wave function depends On g in a complicated 

way, but we may expect further enhancement if we note that the matrix element in 

Eq. (4) is actually like an expectation value of 1!p. Because of the strong binding be

tween the poles, the final-state wave function will be concentrated in a very small 

spatial extent (for example, we shall see that the first Bohr orbit is at least 137 times 

as small as in hydrogen), so that contributions from small p values will become more 

prominent, further enhancing the bound-state production. 

With this expectation in mind, we turn to an explicit calculation of the ratio of 

bound-state to free-pair production. The Coulomb wave function is 

(5\ 

where L is the Laguerre polynomial, the Bohr radius is 

2 
a=--2' 

mg 

and 

x =~ 
na' 

and m the mass of the monopole; then, if we let 

- na-
~n = T (K-q) 
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and expand the plane wave in spherical harmonics, 

(n-I-f)! -3/2 I ~ 
3 a 4,,(i) y lm(~n) 

[(n+/)! I 

r. 1+f -x/2 L2 / +f ( J (7)X JX e n-I-f x) I (~nx) dx, 

At this stage the problem is finished since we have expressed the ratio R in 
n 

terms of an integral over known functions. To get a quick numerical estimate, we can 

make a few approximations which will allow us to do the integral exactly. These should 

not be confused with the assumptions about the monopole production which we made 

earlier which are essential to the model we are proposing. The following assumptions 

are made just to simplify the integral SO the numerical integrations will not be neces

sary. 

First, let us confine our attention to 8 waves in the Coulomb wave function. This 

means that when we sum over final states we will omit values of I greater than 0 and 

underestimate the true value of R (defined by R = ~n R ). Also, we note that in the 
n

limit of large K, 

f x/2 -f /2 ,...,---;-,.-,----;-
LK(x)-Ke r(2)[x(Hnl] J ( '-J4 x ( H n ) . 

t 

Since the detection of monopolonium will probably be made by looking for its decay 

from a high state to the ground state (which is probably unstable against annihilation), 

it makes sense to use this expression in Eq. (7). Then, using the well-known relationS 

r"J (a.JX) J (bx) dx = fIb J (}/4b),JO 2 II II V 

we find 

('M'nlvlei(K-q).P) .J"rnffi!jl ~\ J (~). (8)o 
n 

Inserting this expression into Eq. (5) and carrying out the integrals over phase space, 

we find 

2 6 
2yR = 6" ( m -g-- (f + cos . + cos 2y . ), (9))n IK-q1max n(nl)2 rmn rn m 

where we have written 

2 
Ym in = alK-ql 

max 

and have used the fact that Y » f to evaluate the phase-space integrals.
m in 
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The expression in parentheses in Eq. (9) cannot be smaller than 1 or greater 

than 3, and the ratio mil K -q Imax cannot exceed 1 by too much before the nonrelativ

istic approximation with which we started the calculation would break down. Thus, we 

will in our order of magnitude calculation replace both of these by unity. 

Then, using the predicted value of g, we find 

3 
R - 6TT (4TT)3 (137) 

n n(n!)2 
(10) 

The probability that a monopole pair will, by recombination, become an excited 
6 

state of monopolonium is then

R 
!!. n 

10 
2 x 10 

9
2 4 x 10 

8
2 x 10 

6
4 6 x 10 

4
7 x 10 

3 
6 x 10 

From these results we can draw two conclusions: 

1. Because of the strength of the final-state interaction between monopole and 

antimonopole, it is much more likely that monopolonium will be produced than a free 

pair, 

2. The probability of creating excited states of monopolonium decreases rapidly 

with the principal quantum number, and by n - 8, the bound and free production are 

roughly equivalent. 

The consequence of this conclusion for monopole searches is obvious. The 

enormous enhancement of monopolonium production over free-pair production means 

that searches for evidence of monopolonium (that is, for indirect evidence for the 

existence of monopoles) should be given much more attention than they have heretofore 

received, and some thought should be given to just how such a system would react and 

how one could detect its decay products. 
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6In order that the reader not concern himself greatly with the high n approximation 

that led eventually to Eq. (9), we note in passing that an evaluation of Eq, (7) for the 

case of the ground state of monopolonium (n = 1, 1 = m = 0) gives 

R = 9" g6
1 Z 

which is essentially the same as Eg. (9) evaluation for n = 1. Thus, the approxima

tions which simplified the integrals should not have a large effect on the results--cer
6

tainly not as large an effect as the factor g which is the main thing with which we are 

concerned. In the table, R. is "valuated from the above, and for n > 1, Eq, (10) is 

used. 
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