Studying the Electroweak Sector with the ATLAS Detector

Liqing Zhang University of Science and Technology of China On behalf of the ATLAS Collaboration

HEPMAD18 September 7, 2018

1

Outline

Physics motivations

- Electroweak related results
 - Precision measurements with single W/Z bosons
 - Diboson productions
 - Triboson productions
 - Measurements of rare processes
- Summary

Electroweak physics

> W/Z boson decays

• Precision measurement of W mass, weak mixing angle...

Di-boson production

- involves triple gauge couplings(TGC)
- Triple-boson production
 - involves quartic gauge couplings(QGC)

Electroweak production of vector boson: VBS, VBF

- involves QGC
- sensitive to the electroweak symmetry breaking
- ✓ Test of the electroweak theory
- Search for new physics: anomalous TGC(aTGC), anomalous QGC(aQGC)
- Study of the electroweak symmetry breaking(EWSB) mechanism
- Important background to many new physic searches and studies

(Multiple) Vector boson production with the ATLAS

- Single W/Z bosons
- Diboson production
- Triboson production
- Rare processes VBS, VBF
- Cross sections of electroweak processes at the ATLAS span eight orders of magnitude

Precision measurements with single W/Z boson

- Single W/Z bosons
- Diboson production
- Triboson production
- Rare processes VBS, VBF

Precision measurements with single W/Z boson

- Precision measurements have been performed with single W/Z boson at 7/8 TeV
 - W mass measurement at 7 TeV [Eur. Phys. J. C 78 (2018) 110]
 - weak mixing angle measurement at 7 TeV [JHEP09(2015)049]
- 3 latest ATLAS results using 20.2 fb-1 data at 8 TeV in this talk:
 - 3D cross-section in $Z/\gamma^* \rightarrow II$ at 8 TeV
 - Tau polarisation in Z/ $\gamma^* \rightarrow \tau \tau$ at 8 TeV
 - $\sin^2 \theta_{\text{eff}}^{\text{lep}}$ in Z/ $\gamma^* \rightarrow \text{II}$ at 8 TeV

LEP, A^{0,I}_{FB} SLD, A_{LR} LEP+SLC

PDG Fit

0.23

0.235 sin²θ^{lep}_"

 $\sqrt{s} = 7 \text{ TeV}$. 4.8 fb⁻¹

0.225

Tau polarisation in $Z/\gamma^* \rightarrow \tau \tau$ at 8 TeV

EPJC 78 (2018) 163

- Select tau decay channel of $Z/\gamma^* \to \tau\tau$
 - One τ is hadronic decay
 - One τ is leptonic decay
- Major background: multijet, W+jets
- Signal MC: Alpgen
- Two channel in final state:
 - $\tau_e \tau_{had}$ $\tau_\mu \tau_{had}$
- \blacktriangleright Hadronic decay τ is used to measure polarization
 - Sensitive decay modes: $\tau^{\pm} \rightarrow h^{\pm} v$, $\tau^{\pm} \rightarrow h^{\pm} \pi^{0} v$
 - Observable: asymmetry of energies carried by charged and neutral pion

$$\Upsilon = \frac{E_{\pi^{\pm}} - E_{\pi^{0}}}{E_{\pi^{\pm}} + E_{\pi^{0}}} = 2\frac{p_{T}^{track}}{E_{T}^{\tau_{had-vis}}} - 1$$

- Two regions are defined for polarization extraction
 - Fiducial region
 - Mass-selected region ($66 < M_{Z/v*} < 116 \text{ GeV}$)

- Maximum likelihood fit to the Υ distribution
- Results are in good agreement with Standard Model prediction

Channel	$P_{ au}$ in mass-selected region	P_{τ} in fiducial region		
Combination	-0.14 ± 0.02 (stat) ± 0.04 (syst)	$-0.27\pm0.02(\text{stat})\pm0.04(\text{syst})$		
SM prediction	-0.1517 ± 0.0019	-0.270 ± 0.006		

3D cross-section in $Z/\gamma^* \rightarrow ll$ at 8 TeV

JHEP 12 (2017) 059

TeV, 20.2 fb

- Select leptonic decay of $Z/\gamma^* \rightarrow II$ decays
 - ee and $\mu\mu$ channels in central region ($|y_{ll}| < 2.4$)
 - ee in high-rapidity region ($|y_{ll}| < 3.6$)
- Major background: $Z/\gamma^* \rightarrow \tau\tau$, diboson, Top, multijet
- Signal MC: Powheg
- triple-differential cross section is sensitive to weak mixing angle and the PDFs
- Differential cross section is published differentially in:
 - $m_{ll}, y_{ll}, \cos\theta^*$ m_{ll}, y_{ll} m_{ll}
- A_{FB}, forward-backward asymmetry is derived from the triple-differential cross-section measurements

$$A_{\rm FB} = \frac{\mathrm{d}^3 \sigma(\cos\theta^* > 0) - \mathrm{d}^3 \sigma(\cos\theta^* < 0)}{\mathrm{d}^3 \sigma(\cos\theta^* > 0) + \mathrm{d}^3 \sigma(\cos\theta^* < 0)}$$

Good Agreement with SM prediction

rediction cos9*[±0.7→±1.0]

Prediction $cos\theta^{*}[\pm 0, 0 \rightarrow \pm 0, 4]$

$\sin^2 \theta_{eff}^{lep}$ in Z/ $\gamma^* \rightarrow ll$ at 8 TeV

- Select leptonic decay of $Z/\gamma^* \rightarrow II$
 - ee and $\mu\mu$ channels in central region ee_{CC} , $\mu\mu_{CC}$ ($|y_{ll}| < 2.4$)
 - ee in high-rapidity region ee_{CF} ($|y_{ll}| < 3.6$)
- Major background: $Z/\gamma^* \rightarrow \tau\tau$, diboson, Top, multijet
- Signal MC: Powheg
- > The full five-dimensional differential cross-section can be decomposed as nine polynomials $P_i(cos\theta, \phi)$ with eight angular coefficients A_i , multiplied by corresponding unpolarised cross-sections
- \succ The angular coefficient A_4 is sensitive to $\sin^2 \theta_{eff}^{lep}$

- > The angular coefficients are extracted by fitting templates of the P_i polynomial terms to the reconstructed angular distributions in $(cos\theta, \phi)$ space
- > The extraction of $\sin^2 \theta_{eff}^{lep}$ proceeds by parameterizing A_4 directly in the likelihood via a linear interpolation model derived from predictions

$$A_4\left(\sin^2\theta_{eff}^{lep}\right) = a \times \sin^2\theta_{eff}^{lep} + b$$

Diboson productions

- Single W/Z bosons
- Diboson production
- Triboson production
- Rare processes VBS, VBF

Diboson productions

- WW, WZ, ZZ: leptonic and semi-leptonic decay channels
 - Well measured at 7/8/13 TeV
- Generally good agreement with SM prediction
- 3 latest ATLAS results using 36.1 fb-1 data at 13 TeV in this talk:
 - $Z\gamma \rightarrow vv\gamma$ cross section at 13 TeV
 - WZ cross-section at 13 TeV
 - ZZ \rightarrow 4l cross-section at 13 TeV

$Z\gamma \rightarrow \nu\nu\gamma$ cross section at 13 TeV

ATLAS-CONF-2018-035

- Select neutrino decay channel of $Z\gamma \rightarrow vv\gamma$
- Major background: W(lv)γ, W(e, v), Z(v, v)
- Signal MC: Sherpa2.2.2
- The measured cross sections agree with the SM expectations within one standard deviation
- Differential cross section is measured as a function of variables
 - photon transverse energy E_T^{γ}
 - transverse momentum of neutrino-antineutrino pair $p_T^{\nu \overline{\nu}}$
 - jet multiplicity N_{jet}

- \succ aTGC is studied using Z γ events with high E_T^{γ}
- Confidence intervals of aTGC parameters are determined

WZ cross-section at 13 TeV

ATLAS-CONF-2018-034

- Select leptonic decay of WZ \rightarrow three lepton final states (eee, eeµ, µµe, µµµ) + E_T^{miss}
- Major background: Z+jets, Top, ZZ, ttV
- Signal MC: Powheg
- The measured cross-sections are in good agreement with the SM predictions
- Differential cross-section is measured by adding all four decay channels together

- W/Z polarization is measured using lepton angular distributions
- > Template fit to $q_l \cdot cos\theta_{l,W}$ and of $cos\theta_{l,Z}$ distributions

$ZZ \rightarrow 4l$ cross-section at 13 TeV

Phys. Rev. D 97 (2018) 032005

- Select leptonic decay of $ZZ \rightarrow$ four leptons
- Major background: triboson, Z+jets, Top
- Signal MC: Sherpa2.2.1
- Integrated fiducial cross sections are measured in three decay channels 4e, 2e2μ, and 4μ as well as in their combination
- Good Agreement with SM predictions
- Large dataset and clean final state allows the differential measurement for 20 observables

- aTGC is studied using reconstructed transverse momentum of the leading-p_T Z candidate
- Confidence intervals of aTGC parameters are determined

Triboson productions

- Single W/Z bosons
- Diboson production
- Triboson production
- Rare processes VBS, VBF

Triboson productions

Tridoson productions have been measured at 8TeV

- Wγγ production at 8 TeV [Phys. Rev. Lett. 115, 031802 (2015)]
- Zγγ production at 8 TeV [*Phys. Rev. D* 93 (2016) 112002]
- ZVγ production at 8 TeV [Eur. Phys. J. C 77 (2017) 141]
- WWW production at 8 TeV [Eur. Phys. J. C 77 (2017) 646]
- Generally good agreement with SM prediction
- ➢ No latest result

Measurements of rare processes

- Single W/Z bosons
- Diboson production
- Triboson production
- Rare processes VBS, VBF

Measurements of rare processes

- ➢ VBF and VBS : Well measured at 7/8 TeV
 - EW Wjj VBF production at 7 and 8 TeV [Eur. Phys. J. C 77 (2017) 474]
 - EW Zjj VBF production at 8 TeV [JHEP04(2014)031]
 - Zγ VBS production at 8 TeV [JHEP07(2017)107]
 - WW VBS production at 8 TeV [Phys. Rev. Lett. 113, 14180]
 - WZ VBS production at 8 TeV [Phys. Rev. D 93, 092004 (2016)]
- > 3 latest ATLAS results at 13 TeV in this talk:
 - EW Zjj VBF at 13 TeV
 - WW VBS at 13 TeV
 - WZ VBS at 13 TeV

EW Zjj (VBF) at 13 TeV

PLB 775 (2017) 206

- Select leptonic decay of Z boson
- Major background: diboson, top, multijet, W+jets
- Signal MC: Powheg
- Inclusive Zjj fiducial cross sections is measured in 6 fiducial regions
- Good Agreement with SM prediction

- Results are compared to 8 TeV publication
 - A significant rise in cross-section is observed within each fiducial region
 - In the EW-enriched region, EW-Zjj cross-sections at 13 TeV are respectively 2.2 and 3.2 times as large as those measured at 8 TeV

$W^{\pm}W^{\pm}jj$ (VBS) at 13 TeV

ATLAS-CONF-2018-030

- Select leptonic decay of WWjj \rightarrow lvlvjj
- Major background: WZjj, W+jets, top, $W^{\pm}W^{+}$ •
- Signal MC: Powheg
- \succ VBS signal region:
 - $N_{iet} \ge 2$

- $N_{jet} \ge 2$ $p_T^{jet} > 65(35) \ GeV$ $|\Delta Y_{jj}| > 2$
- Signal events are categorized by the lepton flavor and charge into six channels
- \succ Observed W[±]W[±]jj production integrated fiducial cross section is

- The measured fiducial cross section is compared with predicted by Sherpa and Powheg+Pythia8
- \blacktriangleright Observed significance is 6.9 σ (4.6 σ expected)

WZjj (VBS) at 13 TeV

- Select leptonic decay of WZjj \rightarrow lvlljj ٠
- Major background: WZjj-QCD, ZZ, ttV, Z+jets
- Signal MC: Sherpa2.2.2
- \succ VBS signal region:
- $N_{jet} \ge 2$ $p_T^{jet} > 40 \text{ GeV}$ b-jet Veto
- > BDT discriminant based on 15 variables extract VBS signal

WZjj-EW production integrated fiducial cross section is

 $\sigma_{\text{meas.}}^{\text{fid.,EW}} = 0.57^{+0.14}_{-0.13}(\text{stat.})^{+0.05}_{-0.04}(\text{syst.})^{+0.04}_{-0.03}(\text{th.}) \text{ fb}$

 $\sigma_{\text{Sherpa,LO}}^{\text{fid.,EW th.}} = 0.321 \pm 0.002(\text{stat.}) \pm 0.005(\text{PDF})_{-0.023}^{+0.027}(\text{scale}) \text{ fb}$

- \blacktriangleright Observed significance is 5.6 σ (3.3 σ expected)
- Differential cross-sections is extracted in SR

Summary

> The electroweak precision measurements

- 3D Drell-Yan cross sections, tau polarization and $\sin^2 \theta_{eff}^{lep}$ have been measured with Z/ γ^* decay. They are in good agreement with SM predictions.
- Measurements of diboson production
 - ZZ, WZ and Zγ, have been measured with proton-proton collision data at 13TeV. Good agreements with SM predictions are observed from the leptonic decay channels.
- > The large datasets recorded by the experiments render rare processes accessible
 - VBF single Z boson has been measured and resulted in a consistent cross section as SM predictions.
 - VBS di-boson process $W^{\pm}Z$ and $W^{\pm}W^{\pm}$ have been observed with >5 σ and crosssections agree with SM predictions

Backup

ATLAS experiment

- The Large Hadron Collider (LHC) is a 27-kilometre ring with proton-proton collisions at $\sqrt{s} = 7/8/13$ TeV
- > ATLAS consists:
 - Inner detector($|\eta|$ <2.5)
 - charged-particle tracking and momentum measurement
 - Electromagnetic calorimeter($|\eta|$ <3.2)
 - e/γ trigger, identification and measurement
 - Hadronic calorimeter ($|\eta|$ < 4.9)
 - Jets and MET Trigger , identification and measurement
 - Muon spectrometer ($|\eta|$ <2.7)
 - Muon trigger, identification and measurement

ATLAS data taking

Delivered luminosity versus time for 2011-2018(p-p data only)

Number of interactions per crossing

	2010-2011	2012	2015	2016	2017	2018 Goal
\sqrt{S}	7Tev	8Tev	13Tev	13Tev	13Tev	13 TeV
Good Run Luminosity	4.57 fb^{-1}	20.2 fb^{-1}	3.2 fb^{-1}	32.9 fb^{-1}	44.3 fb^{-1}	60 fb^{-1}