

Martin Rasolonirina, Asivelo F. Solonjara, Heritiana N. Ravoson, Naivo Rabesiranana, Raoelina Andriambololona

Institut National des Sciences et Techniques Nucléaires (INSTN - Madagascar)

Content

- Introduction
 - Conventional technique
 - □ Fallout radionuclide technique

Material and methods

- □ Radiotracer ¹³⁷Cs
- □ Sampling and laboratory work

Results and discussion

- □ Specific activity
- Inventory
- □ Erosion/deposition rates

Conclusion

- High risk of soil degradation
- Water erosion accentuated by human activities and agricultural practices,
- □ Use of conventional technique,
- Use of fallout radionuclide technique

Cesium-137 (¹³⁷Cs)

Artificial radionuclide, half-life of 30 years,

Atmospheric testing of nuclear weapons during 1950s and 1960s,

Rapidly and strongly absorbed by fine soil particle-size (< 2 mm),</p>

Deposition on soil surface by precipitation

Global distribution of ¹³⁷Cs

Localisation of study site

Terraced plots

Sampling

Equipment :

Motorized percussion corer with a long tube of 1 m and a diameter of 10 cm

At reference site :

18 random bulk soil cores,

□ 01 sectioned core for ¹³⁷Cs profile distribution,

□ Core depth : 40 cm

At cultivated site :

□ 18 bulk soil core along 170 m downslope transect (spaced 10 m),

□ 01 sectioned core for ¹³⁷Cs profile distribution,

□ Core depth : 40 cm

Sample preparation

Sample analyses

Activity calculations, (Bq.kg⁻¹) :

$$A = \frac{C}{f \times I_{\gamma} \times t_c \times m}$$

C : total counts, *f* : detection efficiency,

- I_{γ} : intensity of gamma-ray,
- t_c : count time (s),
- m: mass of sample (kg)

Gamma spectrometry system, HPGe detector

$$I = \frac{A \times M_T}{S}$$

A : specific activity of the analysed sample (Bq.kg⁻¹),

 M_t : total dry mass of the bulk core (kg),

S: corer area (m²)

Soil redistribution

Reference site :

□ uncultivated or undisturbed site,

□ site as close as possible to the study area (~1 km),

□ no erosion/deposition processes, generally a flat area,

no high bio-disturbing area

Erosion/depositional area :

□ individual inventory < reference inventory ------ erosion

□ individual inventory > reference inventory — deposition

Mass Balance Model 2 (MBM2)

With, $\Gamma = P\gamma(1 - e^{-R/H})$: Proposition of the freshly deposited ¹³⁷Cs fallout removed by erosion before being mixed into the plough layer by cultivation

- I: inventory (Bq.m⁻²),
- γ : proposition of the annual ¹³⁷Cs input susceptible to removal by erosion,
- *H*: relaxation mass depth of the initial distribution of fallout 137 Cs in the soil profile (kg.m⁻²),
- Φ : annual ¹³⁷Cs deposition flux at time *t* (Bq.m⁻².y⁻¹),
- λ : decay constant (y⁻¹),
- P: ratio of the ¹³⁷Cs concentration of mobilized sediment to that of the original soil,
- R: erosion rate (kg.m⁻².y⁻¹),
- d: average plough depth expressed as cumulative mass depth (kg.m⁻²)

Specific activity

Reference site :

□ maximum activity below soil surface (2-4 cm),

□ timescale radionuclide and downward diffusion effects,

- □ decrease exponentially with depth,
- □ similarly of ¹³⁷Cs vertical distribution found elsewhere in the reference sites

Cultivated site :

□ sample collected at eroded area,

□ maximum activity mixed within plough layer (20 cm),

□ no significant activity detected below plough layer

Inventory

Reference site

□ average fallout inventory : 216 Bq.m⁻² ± 20% (CV),

□ range : 162 Bq.m⁻² to 330 Bq.m⁻²,

□ spatial variability relatively similar to Zimbabwe results (170 Bq.m⁻² to 334 Bq.m⁻²)

(Owens and Walling, 1996) and reported elsewhere in the world (Correchel et al., 2005; Basher, 2000),

Cultivated site

□ range : 145 Bq.m⁻² to 280 Bq.m⁻²,

 \Box average value : 176 Bq.m⁻² < reference value,

□ lower value indicates in general the soil loss moving towards outside the study area,

Model parameters :

Parameter	Symbol	Value	Unit
Reference inventory	I _{ref}	216	Bq.m ⁻²
Proportional factor	γ	0.7	-
Relaxation depth	Н	4.0	Kg.m ⁻²
Plough depth	d	240	Kg.m ⁻²
Particle size factor	Р	1	-

All parameters were based on local conditions

Erosion/deposition rates

- soil deposition observed in the middle and lower slopes of terrace plots,
- reduction runoff movement within the stable area,
- □ net soil erosion: terrace < slope,
- efficient technique for soil conservation management

Component	Estimate
Number of eroded points	13
Number of deposited points	5
Mean erosion rate (t.ha ⁻¹ .y ⁻¹)	7.5
Gross erosion rate (t.ha-1.y-1)	5.4
Net erosion rate (t.ha-1.y-1)	3.3
Sediment delivery ratio (%)	61
Eroding area (%)	72

Conclusion

- potential use of ¹³⁷Cs technique of soil erosion and redistribution study in different agricultural sites,
- □ to obtain the average, gross and net values of soil erosion rate for medium-term (~50 years),
- □ only one sampling is enough to have a reliable results,
- □ to find an ideal reference site,
- □ to choose the appropriate conversion model,
- □ to take into consideration of other radiotracers ²¹⁰Pb or ⁷Be with ¹³⁷Cs

Thank you!