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Abstract

Mainly motivated from the radiative energy loss calculation in quantum chromodynamics, we
present a new approach to calculate the soft factor associated to a photon and gluon radiation.
We show that the action of the little group on the single particle state provides the necessary
condition to calculate the soft factor without Feynman diagrams. Further, this approach will lead
a better understanding of the analytic structure of any radiation to any given process.

1 Introduction

In order to match the high precision physics at the Large Hadron Collider (LHC), it is required for
the theoretical predictions to include high order corrections. In the anomalous magnetic moment of
the electron, the quantum electrodynamics (QED) calculation matches the experimental precision
with an order of 1012 by including multiple radiative correction; see [1]. Including such higher orders
of correction is not just about precision, radiative correction may also unfold hidden phenomena.
In the electroweak sector where initial state radiation leads to a reduced effective center of mass
energy for hard scattering processes, which changes the shape of the measured Z resonance in
e+e− → Z → 2f ; see [2]. In heavy ion physics, a precise understanding of jet energy loss is needed
to characterize several properties of the quark gluon plasma. Such an understanding requires a
theoretical computation of multiple gluon emission, a mechanism that dominate jet suppression in
for light flavored jets.

From classical electrodynamics it has been understood that an accelerated charge radiates
photon. Similarly color charged particles radiate gluon from the sudden change of momentum
caused by some hard scattering between the jet and the constituents of the bulk. Computing
the effect of such radiation is very complex using the standard diagrammatic method of Feynman.
However with the modern onshell method, the complexity in the multiple radiation effect is reduced
to a simple factorization of the radiation effect to the born amplitude [6, 3]. This factorization
is not a surprise since the scattering with the medium and soft radiation act respectively in two
different scales, short and large distance scales. This is known as the factorization scales.

In the on-shell approach, the main idea is to generate higher-point amplitude from the lower-
points using on-shell recursions. Among the different on-shell recursions, the most famous is the
BCFW recursion relation of Britto, Cachazo, Feng and Witten [4]. Constructed from a complex
deformations of the external momenta, the use of the BCFW needs a better understanding of
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three-point amplitudes that play the role of seeds in the recursion. And the success of the on-shell
recursions relay on the fact that the seeds can be fully fixed by the symmetry of the theory, mainly
by the little group action of the Lorentz group that leaves a momentum invariant [5].

In the present work, we review the computation of the soft factor from radiative correction by
imposing scale factorization between the hard collision and soft radiation. Then we use the little
group action to fixed the kinematics of the soft contribution part of the factorized amplitude. The
advantage of this method is that we do not need the analytic expression of the hard scattering in
order to fully fixed the kinematics of the soft factor of the radiation.

It is important to inform the reader that we will only consider massless theory through out of
this work.

2 Wigner’s little group W

2.1 Description

In quantum field theory, the Wigner’s little groups are defined to be the subgroups of the Lorentz
group whose transformations leave the momentum of a given particle invariant [5]. Denoted by W ,
the little groups are known as the symmetry groups for internal space-time structure of relativistic
particles.
Let W ν

µ be the little group associated to the momentum pµ such that

Wµ
ν pµ = pν . (1)

The action of the little groups on a massless particle are represented by the action of unitary
groups Û(W, θ) on the associated single particle state |p, h〉. From such action, it as been shown
in [6, 7] that the single particle state will just pic a phase

Û(W, θ) |p, h〉 = eiθh |p, h〉 , (2)

where θ is a parameter associated to the little group, p the momentum of the massless particle
that is invariant to the action of W as in (1), and h be its helicity. The relation (2) implies that
the little group action of a massless particle state is isomorphic to a U(1) Lie group generated by
the helicity operator L̂:

Û(W, θ) ' 1 + θL̂ with L̂ |p, h〉 = h |p, h〉 . (3)

Therefore on a generic amplitudes, the asymptotic behavior of the external particle leads to the
following relation
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where L̂(j) represents the helicity operator associated to the j-th particle with helicity hj .

2.2 Spinor representation of W

The spinor representation is one of the key ingredients of on-shell method [8, 9]. In this represen-
tation, a momentum pµ will be represented by a two by two matrix given by

Paȧ = σµaȧpµ, (5)
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while the corresponding invariant is equal to the determinant of the 2×2 matrix Paȧ. For massless
particles this determinant is zero and then the momentum can be parametrized as follow

Paȧ = λaλ̄ȧ, (6)

where λ and λ̄ are called the spinor helicity variables and transform, respectively, as a left and
a right handed spinors. From these new variables we can define two different Lorentz invariant
products that are both antisymmetrics:

〈12〉 = εabλ
a
1λ

b
2 and [12] = εȧḃλ̄

ȧ
1λ̄

ḃ
2, (7)

which can be related to the four vector scalar product from 2p1.p2 = 〈12〉 [12]. In this repre-
sentation, the U(1) little group, that leaves pµ invariant, becomes a simple scaling of the spinor
variables,

W :

{
λ −→ t λ

λ̄ −→ t−1λ̄,
(8)

generated by the helicity operator

L̂ = −1

2

(
λa

∂

∂λa
− λ̄ȧ

∂

∂λ̄ȧ

)
. (9)

The single particle states and the amplitudes will be parametrized by the spinor variables associated
to the individual particles and them helicities.

3 Helicity constraints

In this section, we will focus on the internal space-time structure of the scale factorization via the
little groups action (2). Our first assumption is that the hard collision, occurs at small distance
scale, does not interfere with the soft radiation at large distance scale. Such scale separation is
represented by the following factorization of any given amplitude
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pn

, (10)

where pi’s are the momenta of the hard collision and ks the momentum of the soft radiation in red.
The function H(ks; {pi}) is the soft-factor that contain all the information on the soft radiation
“s” and depends on the momentum ks and some set of the hard momentum pi.

In order for the factorization to be physical, the both sides of the relation (10) must have the
same helicity, that is to say the relation has to hold under the helicity operator

L̂(I)
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 , (11)

where L̂(I) is the helicity operator associated to the I-th particule, I = {pi} ∪ ks.
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The action of any helicity operator L̂(I) on amplitudes is given in (4), and in order to (11) to hold,
the following constraint has to be satisfied by the soft-factor H,

L̂(I)H(ks; {pi}) = δI,s hsH(ks; {pi}). (12)

Here δI,s is the Kronecker symbol; and hs is the helicity of the soft particle. Since the helicity

operator L̂ is a scaling generator in the spinor representation (9), therefor one can say that the
soft-factor only scale under a soft scaling{

L̂(s)H(ks; {pi}) = hsH(ks; {pi}),
L̂(i)H(ks; {pi}) = 0.

(13)

The simplicity of such constraints relay in the spinor representation where it becomes a system of
linear equations as in [10].

4 Radiative calculation

In this section we are going to solve the helicity constraint (13). To simplify the problem, the hard
collisions between the parton and the medium will be considered as a 2→ 2 process. It is also well
known that parton medium interactions are dominated by a t-channel exchange for high-pT jet as
shown in Fig.1.

p1 p2

p3 p4

q

(a) t-channel exchange QED

p1 p2

p3 p4

q

(b) t-channel exchange QCD

Figure 1: Scattering between the hard jet in red and the constituent of the medium.

The t-channel interactions are characterized by (p3− p4)2 = q2, which is equal to zero for the case
where qµ be on-shell, and such case is characterized by the proportionality of the following spinor
variables

λ(3)a ∼ λ(4)a ∼ λ(q)a or λ̄
(3)
ȧ ∼ λ̄

(4)
ȧ ∼ λ̄

(q)
ȧ , (14)

where λ(i) and λ̄
(i)
ȧ are the spinor variables associated to the particle with momentum pi, and “∼”

be the symbol of proportionality. Inspired by the MHV amplitudes where it depends only on λ’s
(independent of λ̄’s), we choose the case where the soft-factor H(ks; {pi}) will depends only on λ’s
for hs = −1.

4.1 Single emission

For the single emission, the solution of the helicity constraints (13) is given by

H(s) = A
〈14〉
〈1s〉 〈s4〉

+B
〈42〉
〈4s〉 〈s2〉

, (15)

where the angle braket’s are the spinor scalar products defined in (7). The label “1” and “2” are
the kinematics of the parton jet, “3” and “4” the kinematics characteristic of the medium, and
“s” the kinematic of the radiated gluon. A and B are the factors that contain the information on
the non-kinematic degrees of freedom, such as coupling, color charge, . . .
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• In the case of photon radiation: we have A = B = Qe, electrical charge of the parton, and
after simplification we obtain

Hγ(s) = e
〈12〉
〈1s〉 〈s2〉

. (16)

• In the case of gluon radiation : A = gTaĈ and B = gĈTa, where g is the coupling of QCD,
Ta the color charge associated to the emitted gluon, and Ĉ the color charge associated to the
hard amplitude in Fig.1b. The soft-factor is given by

Hg(s) = gTaĈ
〈14〉
〈1s〉 〈s4〉

+ gĈTa
〈42〉
〈4s〉 〈s2〉

(17)

4.2 Double emission

For the double emission, it is useful to decompose the double soft-factor into an independent
emission piece and a correlated one. Such decomposition can be written as

H(s1, s2) = H(s1)H(s2) +
ξ

〈s1s2〉
R(s1, s2), (18)

In this expression ξ is a correlation parameter that is only non-zero for non-Abelian theory since
in the Abelian case the multiple radiaiton are independent [9]. R(s1, s2) are some function that
scale only on ps1 and ps2 and from (13), one can derive that

L̂(si)R(s1, s2) =
1

2
R(s1, s2) and L̂(i)R(s1, s2) = 0. (19)

In a collinear limit where the two radiation are emitted at a very small angle from the high energetic
parton, we can find

R(s1, s2)

〈s1s2〉
ps1‖ps2−−−−−−−−−→ H(ps)Split(z, ps1 , ps2) (20)

where H(ps) is the soft-factor of a single particle with momentum ps = ps1 + ps2 , and the function
Split(z, ps1 , ps2) is the splitting amplitude that gives the probability for a soft radiation with
momentum ps to be composed by two collinear emission, see [11], with a fraction z, i.e

ps1 = zps and ps2 = (1− z)ps. (21)

5 Conclusion

To conclude let us remind ourselves that the main goal of this work is to compute the soft-factor
by assuming scale factorization. To achieve that goal we introduced the Wigner’s little groups
and them action on the particle state, massless particle. Then we derived the helicity constraints
equations to the soft-factor by applying the little group action to the scale factorization equation.
And finally we solved these kinematic constraint for the case of single and double emission.

The derivation of the helicity constraints in (13) allow us to compute the soft-factor associated
to radiation induced from hard collision. Here the constraints form a system of linear equation
with which we can fix the kinematics of the soft-factor. As shown in (15), the different constant
in the general expression of single emission can be fixed by the different degrees of liberty of the
theory. The solution for the single photon and gluon emissions respectively given by (16) and
(17) agree with the known solutions [3, 9, 11]. For the double emission the introduction of the
introduction of the correlation parameter ξ in our ansatz allows us to differentiate the Abelian and
the non-Abelian part for the solution. by plugin the ansatz back in the helicity constraints gave
to the unknown function R(s1, s2) some constraint lead to the resolution of the double emission
soft-factor.

These result showed us that our method of resolution is very efficient to compute radiation
soft-factors and avoid the complication caused by the large number of diagrams in the Feynman
approach.
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