
1 
 

 
 
 
 

 
 
 

THE RAOELINIAN OPERATOR 
 

Auteur: Raoelina Andriambololona, 

raoelina.andriambololona@gmail.com, jacquelineraoelina@hotmail.com, raoelinasp@yahoo.fr 
 

Theoretical Physics Department, Institut National des Sciences et Techniques Nucléaires (INSTN- Madagascar) 

COmmission Raoelina Andriambololona pour la NANOtechnologie(CORANANO) 

 
 
Dedication: This work is dedicated to my beloved wife and  our 6 children,to my 50 years as professor in the 
University of Antanarivo,to 48 years as full member of Malagasy Academy , to the 42 years of setting up of the 
LPNPA from scratch,to the 26 years of founding of INSTN-Madagascar,to the 5th anniversary of the official setting 
up of CORANANO from scratch,and last but not least to the great number of students of mine. 
 

   

HEPMAD 18 
10th High-Energy Physics International Conference 
Madagascar-Antananarivo (6-11 september 2018) 
 



2 
 

 
 
 
 
 
 
 

Abstract: The raoelinian operator for causal and anticausal functions is introduced to 
unify the derivative and integral operators for any order (real,complex number ).The 
method is based on properties of Euler’s gamma and beta functions.The properties of 
raoelinian operator are given too (linearity,semi-group property,principle of 
correspondence,obtention of the integral and derivative operators from the raoelinian 
operator) . Liouville fractional integral,Riemann fractional integral,Caputo fractional 
derivative,Liouville-Caputo fractional derivative are particular cases of the raoelinian 
operator. Remarkable relations verified by the raoelinian operators of  orders 
are derived. 
 
 
 
 



3 
 

1-Introduction 

The underlying idea comes from the expressions of 𝑛 −derivatives 𝐷  and 𝑛 −order integral 𝐽  of trigonometric and 
exponential function for 𝑛 positive integer. 
 

𝐷 (𝑠𝑖𝑛)(𝑥) = 𝑠𝑖𝑛(𝑥 +
𝜋

2
)               𝐷 (𝑠𝑖𝑛)(𝑥) = 𝑠𝑖𝑛(𝑥 + 𝑛

𝜋

2
)

𝐷 (𝑐𝑜𝑠)(𝑥) = 𝑐𝑜𝑠(𝑥 +
𝜋

2
)              𝐷 (𝑐𝑜𝑠)(𝑥) = 𝑐𝑜𝑠(𝑥 + 𝑛

𝜋

2
)

  

 

𝐽 (𝑠𝑖𝑛)(𝑥) = 𝑠𝑖𝑛(𝑥 −
𝜋

2
)               𝐽 (𝑠𝑖𝑛)(𝑥) = 𝑠𝑖𝑛(𝑥 − 𝑛

𝜋

2
)

𝐽 (𝑐𝑜𝑠)(𝑥) = 𝑐𝑜𝑠(𝑥 −
𝜋

2
)              𝐽 (𝑐𝑜𝑠)(𝑥) = 𝑐𝑜𝑠(𝑥 − 𝑛

𝜋

2
)

  

 
We define one operator 𝓡𝒔 for any real number 𝒔 such 
 

ℛ (𝑠𝑖𝑛)(𝑥) =
𝐷 (𝑠𝑖𝑛)(𝑥)   for any positive real number s 

𝐽 (𝑠𝑖𝑛)(𝑥)   for any negative real number s
  

 
𝐷 (𝑒𝑥𝑝)(𝑘𝑥) = 𝑘 (𝑒𝑥𝑝)(𝑘𝑥)               𝐷 (𝑒𝑥𝑝)(𝑘𝑥) = 𝑘 (𝑒𝑥𝑝)(𝑘𝑥)

𝐽 (𝑒𝑥𝑝)(𝑘𝑥) = 𝑘 (𝑒𝑥𝑝)(𝑘𝑥)              𝐽 (𝑒𝑥𝑝)(𝑘𝑥) = 𝑘 (𝑒𝑥𝑝)(𝑘𝑥)
  

 
Let us  define the one operator  𝑹𝒔 for any real number 𝒔 such 
 

ℛ (𝑒𝑥𝑝)(𝑘𝑥) = 𝑘 (𝑒𝑥𝑝)(𝑘𝑥) =
𝐷 (𝑒𝑥𝑝)(𝑘𝑥)   for any positive real number s 

𝐽 (𝑒𝑥𝑝)(𝑘𝑥)   for any negative real number s
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2-Method 

Our method is the following: 
 

1. Define the integral operator  𝐽  and the derivative operator  𝐷  of the first order (𝑠 = 1)over the definition set E ,  
2. Define the integral operator  𝐽  and the derivative operator 𝐷  for any 𝑠 ∈ ℕ (positive integer number), 
3. Extend to 𝑠 ∈ ℤ (positive and negative integer number), 
4. Define ℛ , 
5. Extend to any 𝑠 ∈ ℝ  (real number), 
6. Extend to any 𝑠 ∈ ℂ  (complex number), 
7. Look for in which case we have 

α) The principle of correspondence 
 

𝑙𝑖𝑚
→

𝐽 (𝑓)(𝑥)(𝑎) = … 𝑓(𝑡 )𝑑𝑡 𝑑𝑡 … 𝑑𝑡 = 𝐽 (𝑓)(𝑥)(𝑎) 𝑓𝑜𝑟 𝑠 ∈ ℕ  

 

𝑙𝑖𝑚
→

𝐷 (𝑓)(𝑥)(𝑎) =
𝑑

𝑑𝑥
(𝑓)(𝑥)(𝑎) 𝑓𝑜𝑟 𝑠 ∈ ℕ 

 

  and 𝐽   are respectively the ordinary derivative and lntegral operators of 𝑛 order 

 
             
         β) linear property of ℛ  
 

ℛ (𝜆𝑓 + 𝜇𝑔) = 𝜆ℛ (𝑓) + 𝜇ℛ (𝑔) 
 
for any 𝜆 and 𝜇  (real or complex number) and any 𝑓 and 𝑔 belonging to the definition set 𝐸. 
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3-Definition of the raoelinian operator ℛ  

Theorem: Let 𝐸 be the set of infinite integrable and derivable functions defined on the interval 𝐼 = [𝑎, +∞[, 𝑎 ∈ ℝ such 
𝑓(𝑥) = 0 for 𝑥 ≤ 𝑎 (causal function.). The raoelinian operator ℛ  is defined by the relation  
 

ℛ (𝑓)(𝑥)(𝑎) =

⎩
⎪
⎨

⎪
⎧

1

Γ(𝑠)
(𝑥 − 𝑦) 𝑓(𝑦)𝑑𝑦 =

𝑥

Γ(𝑠)
(1 − 𝑢) 𝑓(𝑢𝑥)𝑑𝑢                               𝑓𝑜𝑟 𝑅𝑒(𝑠) ≥ 0            

1

Γ(𝑘 + 𝑠)
(𝑥 − 𝑦) 𝐷 𝑓(𝑦)𝑑𝑦 =

𝑥

Γ(𝑘 + 𝑠)
(1 − 𝑢) 𝐷 𝑓(𝑢𝑥)𝑑𝑢   𝑓𝑜𝑟 𝑅𝑒(𝑠) ≤ 0                   

  

 
 where Γ is the extension of Euler gamma function. 𝑘 is a positive integer verifying 𝑘 + 𝑠 ∉ ℤ   ( in fact the Γ function is 
not defined for nonpositive integers). 𝐷  is the ordinary derivative operator of order 𝑘.  The definition ℛ  is independent of 
on the choice of  𝑘.   
 
The raoelinian operator ℛ  gives at the same time the integrals and derivatives operators at any order 𝑠.  If 𝑠 ∈ ℕ = ℤ , ℛ  
is the ordinary integral of order 𝑠 . If 𝑠 ∈ ℤ  (negative integer), ℛ  is the ordinary derivation of order |𝑠| . If  𝑠 ∈ ℝ  
(positive real) or  𝑅𝑒(𝑠) > 0(𝑠 ∈ ℂ), the operator ℛ  is the fractional integral operator 𝐽  of 𝑓 at any order 𝑠.  If  𝑠 ∈ ℝ  
(negative real) or 𝑅𝑒(𝑠) < 0 (𝑠 ∈ ℂ), the operator  ℛ  is the fractional derivative operator 𝐷  of 𝑓 at order |𝑠| or  |𝑅𝑒(𝑠)|. 
 
Proof: The proof is given in our paper [7] for real orders, in our paper [6] for complex order 𝑠, in our paper  [8] for real and 
complex order for causal functions. 
The case of anticausal function (𝑓 = 0 for 𝑥 ≥ 𝑎)  is studied in our paper [9]. The antiintegral and antiderivative are 
introduced. 
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 4-Properties of the raoelinian operator ℛ . 
 

4.1 Linear property 
 

ℛ (𝜆𝑓 + 𝜇𝑔) = 𝜆ℛ (𝑓) + 𝜇ℛ (𝑔) ∀𝜆 ∈ ℝ 𝑜𝑟 ℂ;  ∀𝜇 ∈ ℝ 𝑜𝑟 ℂ; ∀𝑓 ∈ 𝐸; ∀𝑔 ∈𝐸 
  

Proof: The proof is very easy. 
 
4.2 Semi group proprety of  ℛ  
 

ℛ ℛ = ℛ = ℛ ℛ ∀ 𝑠 ∈ ℝ 𝑜𝑟 ℂ, ∀ 𝑠 ∈ ℝ 𝑜𝑟 ℂ 
 
Proof: The proof is given in Appendix I. It is assumed that the derivative 𝐷  (respectively the integral operator 𝐽 ) is the 
inverse of the integral operator 𝐽  (respectively 𝐷 ).  
The study of the inverse of an operator is given in Appendix II. 
 
4.3 Principle of correspondence. 
   
It is easily shown the following properties 
   

lim
→

ℛ (𝑓)(𝑥)(𝑎) = ℛ (𝑓)(𝑥)(𝑎) = 𝐽 (𝑓)(𝑥)(𝑎) ∀ 𝑛 ∈ ℕ, ∀ 𝑓 ∈ 𝐸, ∀𝑎 ∈ ℛ 

lim
→

ℛ (𝑓)(𝑥)(𝑎) = ℛ (𝑓)(𝑥)(𝑎) = 𝐷 (𝑓)(𝑥)(𝑎) ∀ 𝑚 ∈ ℕ, ∀ 𝑓 ∈ 𝐸, ∀𝑎 ∈ ℛ 

 where 𝐽  is the ordinary integral operator of order 𝑛 and 𝐷  is the ordinary derivative operator  of order 𝑚. Then, 

 
lim

→
ℛ = 𝐽       ∀ 𝑛 ∈ ℕ                      lim

→
ℛ = 𝐷      ∀ 𝑚 ∈ ℕ 



7 
 

4.4 Obtention of the integral operator 𝑱𝒏 and the derivative operator 𝑫𝒎 from the raoelinian operator 𝓡𝒔. 
 

    4.4.1 Obtention of the integral operator  𝑱𝒏 from the raoelinian operator  𝓡𝒔 
 

It may be easily shown 
 

ℛ (𝑓)(𝑥)(𝑎) = 𝐽 (𝑓)(𝑥)(𝑎) ⟺ ℛ = 𝐽 ∀ 𝑠 ∈ ℝ  𝑜𝑟 𝑅𝑒(𝑠) > 0 𝑖𝑓 𝑠 ∈ ℂ, ∀ 𝑎 ∈ ℝ 
 
   4.4.2 Obtention of the derivative operator  𝑫𝒏 from the raoelinian operator  𝓡𝒔 
 

a) The left- hand side  derivative operator 𝐷  
 

𝐷 = ℛ ℛ = 𝒟 ℛ ∀ 𝑘 ∈ ℕ, ∀ 𝑚 ∈ ℝ  𝑜𝑟 𝑅𝑒(𝑚) > 0 𝑖𝑓 𝑚 ∈ ℂ 
 
no summation on 𝑘,  is independent on the choice of 𝑘. 
 
Proof: It may be obtained easily by application of the semi-group property. The direct calculation is not difficult. 
  

𝐷 (𝑓)(𝑥)(𝑎) = 𝐷  
1

Γ(𝑘 − 𝑚)
(𝑥 − 𝑦) 𝑓(𝑦)𝑑𝑦 

 
By successive application of the operator 𝐷  on the integral (1 ≤ 𝑘 ≤ 𝐸[𝑚] with 𝐸[𝑚] the integer part of 𝑚, it is easily 
found that 𝐷 (𝑓)(𝑥)(𝑎) is in fact independent on 𝑘. 
 
Taking 𝑘 = 1, we obtain  
 

𝐷 (𝑓)(𝑥)(𝑎) = 𝐷  
1

Γ(𝑘 − 𝑚)
(𝑥 − 𝑦) 𝑓(𝑦)𝑑𝑦 
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If 𝑓(𝑦) = 𝐶, where 𝐶 is a constant 
 
 

𝐷 (𝐶)(𝑎) = 𝐶
(𝑥 − 𝑎)

Γ(1 − 𝑚)
≠ 0 

 
is not null if 𝐶 is not a null constant. 
 
The Riemann 𝑚 −fractionnal derivative is defined by [4] 
 

𝐷 (𝑓)(𝑥) =
𝑑

𝑑𝑥

1

Γ(𝑘 − 𝑚)
(𝑥 − 𝑦) 𝑓(𝑦)𝑑𝑦 

 
which is exactly our 𝐷 (𝑓)(𝑥)(𝑎) for 𝑎 = 0.  
 

b) The right-hand side derivative operator  𝐷  
 

ℛ ℛ = ℛ ℛ = 𝐷  
 
∀ 𝑘 ∈ ℕ, ∀ 𝑚 ∈ ℝ  𝑜𝑟 𝑅𝑒(𝑚) > 0 𝑖𝑓 𝑚 ∈ ℂ, 1 ≤ 𝑘 ≤ 𝐸[𝑚] (with 𝐸[𝑚] the integer part of 𝑚 .). no summation on 𝑘 , is 
independent of the choice of 𝑘. 
 
Proof:  
 

𝐷 (𝑓)(𝑥)(𝑎) = ℛ (𝐷 𝑓)(𝑥)(𝑎) =  
1

Γ(𝑘 − 𝑚)
(𝑥 − 𝑦)

𝑑

𝑑𝑦
𝑓(𝑦)𝑑𝑦 
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By successive integration by part of the function 𝑓 and taking account the limit values, we obtain that the second member is 
independent on the choice of 𝑘. Taking 𝑘 = 1, we have  
 

𝐷 (𝑓)(𝑥)(𝑎) =
1

Γ(1 − 𝑚)
(𝑥 − 𝑦)

𝑑

𝑑𝑦
𝑓(𝑦)𝑑𝑦 

 
If 𝑓(𝑦) = 𝐶 where 𝐶 is a constant  

𝐷 (𝐶)(𝑎) = 0   𝑒𝑣𝑒𝑛 𝑖𝑓 𝐶 ≠ 0 
 
𝐷  is the good choice rather 𝐷  if we require the principle of correspondence (the derivative of a of a constant is null) 
 

Let us introduce the raoelinian operator ℛ  for 𝑚 ∈ ℝ ( 𝑜𝑟 𝑅𝑒(𝑚) > 0 𝑖𝑓 𝑚 ∈ ℂ )  and show that 
 

𝐷 = ℛ  
 

ℛ (𝑓)(𝑥)(𝑎) =
1

Γ(𝑠)
(𝑥 − 𝑦) 𝑓(𝑦)𝑑𝑦 

 
Let us integrate by part the function under the integral sign and take account of the limit values: 
 

ℛ (𝑓)(𝑥)(𝑎) =
1

Γ(𝑠 + 1)
(𝑥 − 𝑦)

𝑑

𝑑𝑦
𝑓(𝑦)𝑑𝑦 

 

ℛ (𝑓)(𝑥)(𝑎) =
1

Γ(1 − 𝑚)
(𝑥 − 𝑦)

𝑑

𝑑𝑦
𝑓(𝑦)𝑑𝑦 = 𝐷 (𝑓)(𝑥)(𝑎) 

 
ℛ = 𝐷              𝑚 ∈ ℝ ( 𝑜𝑟 𝑅𝑒(𝑚) > 0 𝑖𝑓 𝑚 ∈ ℂ 
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The Liouville-Caputo fractional derivative definition is [4] 
 
 

𝐷 (𝑓)(𝑥) =
1

Γ(1 − 𝑚)
(𝑥 − 𝑦)

𝑑

𝑑𝑦
𝑓(𝑦)𝑑𝑦 

 
 

which is exactly 𝐷 (𝑓)(𝑥)(−∞) = ℛ (𝑓)(𝑥)(−∞)  with the particular value 𝑎 = −∞. 
 
 
The Caputo fractional derivative is defined by [4] 
 
  

𝐷 (𝑓)(𝑥) =
1

Γ(1 − 𝑚)
(𝑥 − 𝑦)

𝑑

𝑑𝑦
𝑓(𝑦)𝑑𝑦 

 
 

which is exactly 𝐷 (𝑓)(𝑥)(0) with the value 𝑎 = 0 
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  Remarks 
a) If the operator𝐷  (respectively 𝐽 ) is the inverse of the operator 𝐽  (respectively 𝐷 ), then we have the semi-group 

property for the raoelinian operator  ℛ  and we have one derivative operator 𝐷 = 𝐷  
If it is not the case, the semi-group property does not stand for the raoelinian operator ℛ  but we have the semi-group 
property for 𝐽  and 𝐷  separately. 

b) The definition of the derivative operator 𝐷  obtained from the definition of the integral operator 𝐽  
 

𝐷 (𝑓)(𝑥)(𝑎) = 𝐷 𝐽 (𝑓)(𝑥)(𝑎) 
 
 

introduces the choice on the positive number 𝑘 (𝑘 − 𝑠 > 0). We have shown in fact that the final result is independent 
on 𝑘 . 
We have the relation  

𝐽 (𝑓)(𝑥)(𝑎) = 𝑓(𝑡)𝑑𝑡 = 𝐹(𝑥) − 𝐹(𝑎) 

𝐹 being a primitive of 𝑓. 
 

𝐷 𝐽 (𝑓)(𝑥)(𝑎) = 𝐹 (𝑥) = 𝑓(𝑥)     or 𝐷 𝐽 = 1  
 

             𝐽 𝐷 (𝑓)(𝑥)(𝑎) = 𝑓 (𝑡) 𝑑𝑡 = 𝑓(𝑥) − 𝑓(𝑎) ≠ 𝑓(𝑥) 𝑖𝑓 𝑓(𝑎) ≠ 0      𝐽 𝐷 ≠ 1  

 
𝐽 𝐷 = 𝐷 𝐽 = 1  if and only if 𝑓(𝑎) = 0 

 
If 𝐽 𝐷 ≠ 𝐷 𝐽  then, we have the problem of the choice (left- hand side or right- hand side) for the derivative. We give the 
study about the inverse of an operator in Appendix II. 
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5-Applications of our results.  
 
Let us take 𝑓(𝑥) = 𝑥  for any positive real 𝑝 
 

ℛ (𝑥 ) =
Γ(𝑝 + 1)

Γ(𝑝 + 𝑠 + 1)
𝑥 =

𝑝!

(𝑝 + 𝑠)!
𝑥  

 
With the extension of the eulerian gamma function Γ(𝑘) for any positive real 𝑠 , we have the following results 
 

ℛ (𝑥 ) = 𝐽 (𝑥 ) =
𝑒!

(𝑒 + 𝜋)!
𝑥                      ℛ (𝑥 ) = 𝐽 (𝑥 ) =

𝜋!

(𝑒 + 𝜋)!
𝑥  

 
The ratio 

ℛ (𝑥 )

ℛ (𝑥 )
=

𝑒!

𝜋!
= 0,592761 747048 502 880 285354 552 437 32 … 

is independent of 𝑥. 
 

ℛ (𝑥 ) = 𝐷 (𝑥 ) =
𝑒!

(𝑒 − 𝜋)!
𝑥                 ℛ (𝑥 ) = 𝐷 (𝑥 ) =

𝜋!

(𝜋 − 𝑒)!
𝑥  

 
The product 
 

ℛ (𝑥 )ℛ (𝑥 ) =
𝑒!

(𝑒 − 𝜋)!

𝜋!

(𝜋 − 𝑒)!
= 22.364 994 517 058 857 454 906 921 720 114 … 

 
is independent of 𝑥. Direct calculations of these results have been given in our paper [7].                                                              
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Appendix I: The proof of the semi-group property of the raoelinian operator 𝓡𝒔 
 

We have to demonstrate the relation 
ℛ ℛ = ℛ = ℛ ℛ  

 

It is assumed that the operator 𝐽  (respect. 𝐷 ) is the inverse of the operator  𝐷  (respect. 𝐽 ) 
 

ℛ ℛ (𝑓)(𝑥)(𝑎) =
1

Γ(𝑠 )Γ(𝑠 )
𝑑𝑦(𝑥 − 𝑦) (𝑦 − 𝑧) 𝑓(𝑧)𝑑𝑧 ∀ 𝑓 ∈ 𝐸 , ∀ 𝑠 , 𝑠 ∈ ℝ 𝑜𝑟 ℂ, ∀𝑎 ∈ ℝ 

 

Applying Dirichlet’s formula [11] 

𝑑𝑦(𝑥 − 𝑦) (𝑦 − 𝑧) 𝑔(𝑦, 𝑧)𝑑𝑧 = 𝑑𝑧 𝑑𝑦 (𝑥 − 𝑦) (𝑦 − 𝑧)  

with 𝑔(𝑦, 𝑧) = 𝑓(𝑧), we have  

ℛ ℛ (𝑓)(𝑥)(𝑎) =
1

Γ(𝑠 )Γ(𝑠 )
𝑑𝑧𝑓(𝑧) 𝑑𝑦(𝑥 − 𝑦) (𝑦 − 𝑧)  

We introduce the variable 𝑢 = 𝑦 = 𝑧 + 𝑢(𝑥 − 𝑧) 𝑑𝑦 = (𝑥 − 𝑧)𝑑𝑢        

ℛ ℛ (𝑓)(𝑥)(𝑎) =
1

Γ(𝑠 )Γ(𝑠 )
𝑑𝑧𝑓(𝑧) (𝑥 − 𝑧) 𝑑𝑢(1 − 𝑢) 𝑢 =

1

Γ(𝑠 + 𝑠 )
𝑑𝑧𝑓(𝑧)(𝑥 − 𝑧)  

 

⟹ ℛ ℛ (𝑓)(𝑥)(𝑎) =
1

Γ(𝑠 + 𝑠 )
𝑑𝑧𝑓(𝑧)(𝑥 − 𝑧) = ℛ (𝑓)(𝑥)(𝑎) 

 
⇒ ℛ ℛ = ℛ  

The expression is symmetric in 𝑠 and 𝑠  
ℛ ℛ = ℛ = ℛ ℛ  
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                                                                       Appendix II : Inverse of an operator [ 12] 
                                                           
 

Theorem: Any operator 𝐴 has at least a right- hand side inverse 𝐶. 
 
Proof: Let 𝑦  be an element of the value domain 𝑉𝑎𝑙(𝐴) of an operator 𝐴. By definition of 𝑉𝑎𝑙(𝐴), there is at least an 
element 𝑥  belonging to the definition domain  𝐷𝑒𝑓(𝐴) of the operator 𝐴 such as 
 
 

𝐴(𝑥 ) = 𝑦 
 
 

For any element 𝑦 ∈ 𝑉𝑎𝑙(𝐴), we may choose an 𝑥. Let us designate it by 𝑥  and define the operate 𝐶 such 
 
 

𝐶(𝑦) = 𝑥  
 
 

Then 𝐴(𝐶)(𝑦) = 𝐴(𝑥 ) = 𝑦 for any 𝑦 ∈ 𝑉𝑎𝑙(𝐴)   
 

𝐴𝐶 = 1 ( ) 
 
 

in which 1 ( ) is the identity operator on 𝑉𝑎𝑙(𝐴). It depends on a choice. 
 
 
 
 



15 
 

Example: The inverse function in the classical meaning is in fact a right hand-side inverse. For instance, Arcsin is the right-
hand side inverse function of the sinus function 

 

       sin(𝐴𝑟𝑐𝑠𝑖𝑛) = 1 ( ) = 1[ , ] 

 
sin(𝐴𝑟𝑐𝑠𝑖𝑛) (𝑎) = 𝑠𝑖𝑛𝛽 = 𝑎 in which 𝛽 = 𝐴𝑟𝑐𝑠𝑖𝑛(𝑎)  is the principal determination belonging to the angular interval 

[ − , ]. We have 𝐴𝑟𝑐𝑠𝑖𝑛(𝛼) = 𝑥 ∈ [ − , ] 

 
          𝐴𝑟𝑐𝑠𝑖𝑛(𝑠𝑖𝑛)(𝑥) = 𝐴𝑟𝑐𝑠𝑖𝑛(𝑠𝑖𝑛𝑥) 

𝐴𝑟𝑐𝑠𝑖𝑛(𝛼) = 𝑥  

     𝐴𝑟𝑐𝑠𝑖𝑛(𝑠𝑖𝑛𝑥) = 1   

𝑉𝑎𝑙 𝐴𝑟𝑐𝑠𝑖𝑛(𝑠𝑖𝑛) = [ −
𝜋

2
,
𝜋

2
] 

                  𝐴𝑟𝑐𝑠𝑖𝑛(𝑠𝑖𝑛) = 𝐷𝑒𝑓(𝑠𝑖𝑛) = ℝ 

The inverse function implies a choice for the determination for a function having multideterminations (function like √ , 

Arcsin, Arctg,etc,…). It is worth pointing out that Arcsin is an operator but arcsin is not an operator because there are many 

(infinite) values of arcsin(𝑥) for one given 𝑥.   

 

 

 



16 
 

 

REFERENCES 
 
[1] S. Miller, Kenneth, “An introduction to the fractional calculus and the fractional differential equations”, Bertram Ross (Editor). 

Publisher:John Wiley and Sons 1st edition, ISBN 0-471-58884-9 , 1993 
[2] R.Khalil,M.Al Horani,A.Yousef,M.Sababheh,A new definition of fractional ,derivative,Journal of Computation and Applied 

Mathematics,Vol.264,July 2014,pp.65-70. 
[3] B.Oldham Keith and J. Spanier, “The fractional calculus. Theory and Application of differentiation and integration to arbitrary 

order”,Publisher: Academic Press, ISBN 0-12-525550-0, 1974 
[4] R. Herrmann, “Fractional calculus. An introduction for physicists”, World Scientific Publishing, Singapore, 2011 
[5] Bruce J.West,Mauro Bologna,Paolo Grigolini,Physics of Fractal Operators,Institute for Nonlinear Science,Spring-Verlag,ISBN 0-

387-9554-2,2003 
[6] Raoelina Andriambololona, Ranaivoson Tokiniaina, Hanitriarivo, Rakotoson, “Definitions of complex order integrals and 

complex orderderivatives using operator approach.”, International Journal of Latest Research in Science and Technology, Vol.1, 
Issue 4, pp. 317-323, 2012 

[7] Raoelina Andriambololona, “Definitions of real order integrals and derivatives using operator approach.”, Pure and Applied 
Mathematics Journal Vol. 2, no.1, pp.1-9, 2013 

[8] Raoelina Andriambololona, “Real and complex order Integrals and derivatives operators over the set of causal functions”, 
International Journal of Latest Research in Science and Technology, Vol 2, Issue 1, pp. 470-477, 2013 

[9] Raoelina Andriambololona,“An unified definitions for anti-integral and anti-derivatives operator for any order.”, International 
Journal of Latest Research in Science and Technology, Vol. 2, Issue 2, pp. 46-54, 2013 

[10]  Raoelina Andriambololona. »A new operator giving integrals and derivatives operators at any order at the same time » 
International Journal of Innovative research in Science, Engineering and Technology,Vol.3,Issue 7,July 2014 

[11]  E.T Whittaker and G.N. Watson, “A course of modern analysis”, Cambridge University Press, Cambridge, 1965 
[12]  Raoelina Andriambololona Algèbre linéaire et Multilinéaire.Applications.3 tomes Collection LIRA ,,INSTN 

Madagascar,Antananarivo,Madagascar,1986,Tome I,pp 2-59. 
 
 


