
1 

 

HEPMAD 18 
10th High-Energy Physics International Conference 
Madagascar-Antananarivo (6-11 september 2018) 

 
 

Fermion fields and fermion states in a phase space 
representation of quantum theory 

  
  
Ravo Tokiniaina Ranaivoson1, Raoelina  Andriambololona2, Hanitriarivo Rakotoson3, Roland 

Raboanary 4 

 
tokhiniaina@gmail.com1, tokiniainaravor13@gmail.com1, raoelinasp@yahoo.fr2, 

raoelina.andriambololona@gmail.com2, jacquelineraoelina@hotmail.com2, 

infotsara@gmail.com3 , r_raboanary@yahoo.fr4 

 
Information Technology  and Theoretical Physics Department1,2,3 

Institut National des Sciences et Techniques Nucléaires (INSTN- Madagascar) 
BP 3901 Antananarivo101, Madagascar, instn@moov.mg 
 

Mention Physique et Applications, Faculté des Sciences – University of Antananarivo2,4 

 
Abstract: This work is about the study on an approach to establish a description of fermion 
fields and fermion states in a framework of a phase space representation of quantum theory. 
This approach is based on the results obtained after a series of previous works concerning the 
phase space representation. Some significant parts of these previous results has been reviewed 
and exploited and then extended. Expression of fermion fields operators fitting with the phase 
space representation has been established, with the corresponding field equation, from the 
current formulation of quantum electrodynamics. Then discussion about the description of the 
fermion fields and fermion states in phase space representation has been deduced from the 
results of previous works concerning the relation between the phase space representation, 
linear canonical transformation and properties of elementary fermions. 
 
 
 

Keywords: Phase space representation, fermion fields, fermion states, field equation, particle 
properties 
 



2 

 

1-Introduction 

   In our paper [1], an approach has been introduced to deal with the problem of establishing a 
phase space representation of quantum theory which takes into account the Heisenberg 
uncertainty relation. The formulation corresponding to this approach was enriched and 
developed through our works [2-8].  This work aims at extending this formulation in order to 
obtain the description of fermions fields and fermions states in the framework of the phase 
space representation. 
 
From then, the basic formulation of the phase space representation is reviewed. This leads to 
the development of an approach which permits to deduce the expression of the fermions field 
and its corresponding equation, compatible with the phase space representation, from the 
current formulation of quantum electrodynamics. It is followed by the review of the results 
obtained in [8] concerning the relation between the phase space representation, linear 
canonical transformations and properties of the elementary fermions of the Standard Model. 
Thus, discussion concerning the establishment of a description of fermions fields and 
fermions states within the phase space representation is deduced.        
 
2-Basic formulation of the phase space representation 

From the current formulation of quantum mechanics, it is well known that the main 
representations which are used to represent the quantum state of a particle are the coordinate 
and momentum representations. For the coordinate representation, the basis of the states 
space, used to expand a state | 𝜓⟩  , is composed by the eigenstates | 𝑥⟩  of the coordinate 
operator 𝒙  
 

| 𝜓⟩  = | 𝑥⟩  ⟨𝑥|𝜓⟩𝑑𝑥 = 𝜓(𝑥)| 𝑥⟩  𝑑𝑥

𝒙| 𝑥⟩  = 𝑥| 𝑥⟩                                              

                                       (1.1) 

 
For the momentum representation, the basis elements are the eigenstates | 𝑝⟩  of the momentum 
operator 𝒑    
 

| 𝜓⟩  = | 𝑝⟩  ⟨𝑝|𝜓⟩𝑑𝑥 = 𝜓(𝑝)| 𝑝⟩  𝑑𝑝

𝒑| 𝑝⟩  = 𝑝| 𝑝⟩                                              

                                          (1.2) 

 
The functions 𝜓(𝑥)  and  𝜓(𝑝)  are the wavefunctions respectively in the coordinate 
representation and in the momentum representation. They are linked by a Fourier 
transformation 
 

𝜓(𝑝) = ⟨𝑝|𝜓⟩ =
1

√2𝜋ℏ
⟨𝑝|𝑥⟩⟨𝑥|𝜓⟩ 𝑑𝑥 =

1

√2𝜋ℏ
𝑒 ℏ 𝜓(𝑥) 𝑑𝑝                (1.3) 

 
The phase space representation, introduced in [1] may be seen as a coordinate-momentum 
joint representation which takes into account the Heisenberg uncertainty principle. It permits 
to have simultaneously a look at the values of the coordinate and momentum of a particle 
without violating the uncertainty principle. The expression of a quantum state | 𝜓⟩   in this 
representation is  
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| 𝜓⟩  = Ψ(𝑛, 𝑋, 𝑃, 𝒷)| 𝑛, 𝑋, 𝑃, 𝒷⟩  𝑑𝑋𝑑𝑃

2𝜋ℏ
= Ψ(𝑛, 𝑋, 𝑃, 𝒷)| 𝑛, 𝑋, 𝑃, 𝒷⟩ 

𝒏

        (1.4) 

in which the elements  | 𝑛, 𝑋, 𝑃, 𝒷⟩  of the basis which defines the representation are the phase 
space states [1].  We have the relations 
 

⎩
⎪
⎨

⎪
⎧

⟨𝑛, 𝑋, 𝑃, 𝒷|𝒙|𝑛, 𝑋, 𝑃, 𝒷⟩ = 𝑋                                                                
⟨𝑛, 𝑋, 𝑃, 𝒷|𝒑|𝑛, 𝑋, 𝑃, 𝒷⟩ = 𝑃                                                                

𝑛, 𝑋, 𝑃, 𝒷 (𝒙 − 𝑋)𝟐 𝑛, 𝑋, 𝑃, 𝒷 = (2𝑛 + 1)(𝒶) = (2𝑛 + 1)𝒜

𝑛, 𝑋, 𝑃, 𝒷 (𝒑 − 𝑃)𝟐 𝑛, 𝑋, 𝑃, 𝒷 = (2𝑛 + 1)(𝒷) = (2𝑛 + 1)ℬ

                    (1.5) 

 
According to these relations, 𝑋, 𝑃, (2𝑛 + 1)𝒜, (2𝑛 + 1)ℬ are respectively the means values 
and statistical dispersions (variances) of the coordinate and momentum in the 
state | 𝑛, 𝑋, 𝑃, 𝒷⟩ . 𝑛 being a positive integer. The standard deviation (uncertainty)   𝒶 = √𝒜  
and 𝒷 = √ℬ  relative to the state | 0, 𝑋, 𝑃, 𝒷⟩  corresponds to a saturation of the Heisenberg 
uncertainty relation  that is 

𝒶𝒷 =
ℏ

2

𝒜ℬ = (
ℏ

2
)

                                                                                   (1.6) 

The states | 𝑛, 𝑋, 𝑃, 𝒷⟩  are the eigenstates of the momentum dispersion operator ℶ  [1, 3, 4] 
 

ℶ =
1

2
[(𝒑 − 𝑃)𝟐 + 4(

ℬ

ℏ
) (𝒙 − 𝑋)𝟐] ⇒ ℶ | 𝑛, 𝑋, 𝑃, 𝒷⟩  = (2𝑛 + 1)ℬ| 𝑛, 𝑋, 𝑃, 𝒷⟩  

 The functions  Ψ(𝑛, 𝑋, 𝑃, 𝒷) in the relations (1.4) are the phase space wavefunctions [1, 6]. 
They are related to the wavefunction  𝜓(𝑥) in coordinate representation by the relation  
  

Ψ(𝑛, 𝑋, 𝑃, 𝒷) = ⟨𝑛, 𝑋, 𝑃, 𝒷|𝑥⟩⟨𝑥|𝜓⟩ 𝑑𝑥 =

𝐻
𝑥 − 𝑋

√2𝒶

2 𝑛! √2𝜋𝒶
𝑒 𝒶 ℏ 𝜓(𝑥)𝑑𝑥    (1.7) 

in which 𝐻   is a Hermit polynomial of degree 𝑛.  

We may remark that the wavefunction in coordinate representation corresponding to a state 

| 𝑛, 𝑋, 𝑃, 𝒷⟩  which permits to define the phase space representation is 

⟨𝑥|𝑛, 𝑋, 𝑃, 𝒷⟩ = (⟨𝑛, 𝑋, 𝑃, 𝒷|𝑥⟩)∗ =

𝐻
𝑥 − 𝑋

√2𝒶

2 𝑛! √2𝜋𝒶
𝑒 𝒶 ℏ                      (1.8) 

 A multidimensional generalization of the phase space representation may be performed [4]. 
The relations who generalize (1.5), (1.6) and (1.8) and define the basis 
{  {𝑛 }, {𝑋 }, {𝑃 }, {𝒷 }  } of the space states defining this generalization are 
 

⎩
⎪
⎨

⎪
⎧

{𝑛 }, {𝑋 }, {𝑃 }, {𝒷 } 𝒙 {𝑛 }, {𝑋 }, {𝑃 }, {𝒷 } = 𝑋

{𝑛 }, {𝑋 }, {𝑃 }, {𝒷 } 𝒑 {𝑛 }, {𝑋 }, {𝑃 }, {𝒷 } = 𝑃

{𝑛 = 0}, {𝑋 }, {𝑃 }, {𝒷 } (𝒑 − 𝑃 )(𝒑 − 𝑃 ) {𝑛 = 0}, {𝑋 }, {𝑃 }, {𝒷 } = ℬ

{𝑛 = 0}, {𝑋 }, {𝑃 }, {𝒷 } (𝒙 − 𝑋 )(𝒙 − 𝑋 ) {𝑛 = 0}, {𝑋 }, {𝑃 }, {𝒷 } = 𝒜
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                                    𝒜 ℬ =
1

4
𝛿  

 

𝑥 𝑛 , 𝑋 , 𝑃 , 𝒷 = 

1

[2𝜋𝑑𝑒𝑡(ℬ )] /
(

𝐻 [√2𝒷 (𝑥 − 𝑋 )]

2 𝑛 ! 
) 𝑒 ℬ ( )( )  

 
2- Fermions fields in phase space representation 

    In the framework of the current formulation of quantum electrodynamics, the well-known 
equation for free fermions field 𝝍 is the Dirac equation 

(𝑖𝛾
𝜕

𝜕𝑥
− 𝑚)𝝍 = 0                                                       (2.1) 

 
and the corresponding expression of the field operator 𝝍 which satisfies this equation is 
 

𝝍(𝑥) =
𝑑 𝑝

(2𝜋) 𝐸(𝑝)
[𝕒 (𝑝)𝑢 (𝑝)𝑒 + 𝕓 (𝑝)𝑣 (𝑝)𝑒 ]          (2.2) 

 
in which 𝑢 (𝑝)  and 𝑣 (𝑝)  are  Dirac spinors which satisfies the relations  
  

(𝛾 𝑝 − 𝑚)𝑢 (𝑝) = 0

(𝛾 𝑝 + 𝑚)𝑣 (𝑝) = 0
                                                               (2.3) 

 

and 𝕒 (𝑝), 𝕓 (𝑝)  are respectively the particle annihilation and antiparticle  creation 
operators. They satisfies the well-known canonical anticommutation relations  
 

{𝕒 (𝑝), 𝕒 (𝑝′)} = (2𝜋) 𝛿 𝛿(𝑝 − 𝑝′)

{𝕓 (𝑝), 𝕓 (𝑝′)} = (2𝜋) 𝛿 𝛿(𝑝 − 𝑝′)
                                     (2.4) 

 
the expression (2.2) can be seen as a momentum representation of the field operator. A 
possible expression for a phase space representation is 
 

𝝍(𝑥) =
𝑑 �⃗�𝑑 �⃗�

(2𝜋) 𝐸
𝕒 𝑢 𝑒 + 𝕓 𝑣 𝑒 𝑒 ℬ ( )( )             (2.5) 

 
in which 𝑃  and  𝑋   are the mean values of the momentum and coordinate of a particle and  
the ℬ  are the components of the momentum dispersion-codispersion (i.e statistical variance-
covariance) tensor. 𝐸 is a  normalization. The expression (2.5) stands if the field equation is 
   

[𝑖(𝛾
𝜕

𝜕𝑥
+ 2ℬ 𝑥 ) − 𝑚]𝝍 = 0                                                   (2.6) 
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and if we have the relations 

 
(𝛾 𝑍 − 𝑚)𝑢 = 0

(𝛾 𝑍∗ + 𝑚)𝑣 = 0
                                                                  (2.7) 

 
in which  𝑍  is the complex variable 

𝑍 = 𝑃 + 2𝑖ℬ 𝑋                                                               (2.8) 
 
Remark: The Dirac equation (2.1) is obtained from  (2.6) in the limits  ℬ → 0   
 
3- Linear canonical transformations and properties of elementary fermions of the 
Standard Model  
  

    The phase space representation provides a framework for the study of linear canonical 
transformation (LCT) [2, 4-5, 7-8]. We have shown in [8] that the study on the spinorial 
representation of this transformations permits to deduce some of the properties of the 
elementary fermions of the Standard Model of Particle Physics. 
 

A linear canonical transformation (LCT) can be defined as linear transformation mixing the 
momentum and coordinate operators and leaving invariant the canonical commutation 
relations of coordinate and momentum operators. With the reduced operators 𝒑𝝁 and 𝒙𝝁  
corresponding to a pseudo-Euclidian space with signature(𝑁 , 𝑁 ), the definition  of an LCT  
may be written as  [4, 8] 
 

𝒑 = Π 𝒑𝝂 + Θ 𝒙𝝂

𝒙 = Ξ 𝒑𝝂 + Λ 𝒙𝝂

𝒑 , 𝒙 = 𝒑 , 𝒙 = 𝑖𝜂

  ⟺
Π Ξ
Θ Λ

0 𝜂
−𝜂 0

Π Ξ
Θ Λ

=
0 𝜂

−𝜂 0
 

                                ⟺
Π Ξ
Θ Λ

∈ 𝑆𝑝(2𝑁 , 2𝑁 )                                  (3.1) 

These relations mean that an LCT corresponds to an element of the pseudosymplectic group 
𝑆𝑝(2𝑁 , 2𝑁 ). A geometric parameterization is [7-8]  
 

Π Ξ
Θ Λ

= 𝑒 ⟺

⎩
⎪
⎨

⎪
⎧ 𝜃 = 𝜂𝜃𝜂 

𝜑 = 𝜂𝜑𝜂 

𝜇 = 𝜂𝜇𝜂    

𝜆 = −𝜂𝜆𝜂 

  ⟺
𝜆 + 𝜇 𝜑 + 𝜃
𝜑 − 𝜃 𝜆 − 𝜇

∈ 𝐿𝑖𝑒 [𝑆𝑝(2𝑁 , 2𝑁 )] 

 The LCTs corresponding to the case 𝜇 = 𝜑 = 0 may be seen as a generalization of pseudo-
orthogonal transformations (like Lorentz transforms) and Fractional Fourier transformations 
(rotations in coordinate –momentum plane) [7-8]. We have a spinorial representation 
according to the following relations [8]  
 

𝒮 = 𝜚(𝑒 ) ⟺ (𝒑 𝒙 ) = (𝒑 𝒙)𝑒

𝛼 𝒑𝝁 + 𝛽 𝒑𝝁 = 𝒮 𝛼 𝒑𝝁 + 𝛽 𝒙𝝁 𝒮
          (3.2) 

𝒮 = 𝑒[ ( )( )  ]                                    (3.3) 
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The operator 𝒮 defining this spinorial representation is an element of the spin group 
𝑆𝑝𝑖𝑛(2𝑁 , 2𝑁 ). And the operators 𝛼  and 𝛽   are the generators of the Clifford algebra 
ℭ(2𝑁 , 2𝑁 ) i.e. they verify the following anticommutation relations 
 

𝛼 𝛼 + 𝛼 𝛼 = 2𝜂

𝛽 𝛽 + 𝛽 𝛽 = 2𝜂

𝛼 𝛽 + 𝛽 𝛼 = 0       

                                                            (3.4) 

 

For the case of (𝑁 , 𝑁 ) = (1,4)  (pentadimensional theory), we may choose the following 
matrices representation [8]  
 

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧

𝛼 = 𝜎 ⊗ 𝜎 ⊗ 𝜎 ⊗ 𝜎 ⊗ 𝜎

𝛼 = 𝑖𝜎 ⊗ 𝜎 ⊗ 𝜎 ⊗ 𝜎 ⊗ 𝜎

𝛼 = 𝑖𝜎 ⊗ 𝜎 ⊗ 𝜎 ⊗ 𝜎 ⊗ 𝜎

𝛼 = 𝑖𝜎 ⊗ 𝜎 ⊗ 𝜎 ⊗ 𝜎 ⊗ 𝜎

𝛼 = 𝑖𝜎 ⊗ 𝜎 ⊗ 𝜎 ⊗ 𝜎 ⊗ 𝜎

𝛽 = 𝜎 ⊗ 𝜎 ⊗ 𝜎 ⊗ 𝜎 ⊗ 𝜎

𝛽 = −𝑖𝜎 ⊗ 𝜎 ⊗ 𝜎 ⊗ 𝜎 ⊗ 𝜎

𝛽 = −𝑖𝜎 ⊗ 𝜎 ⊗ 𝜎 ⊗ 𝜎 ⊗ 𝜎

𝛽 = −𝑖𝜎 ⊗ 𝜎 ⊗ 𝜎 ⊗ 𝜎 ⊗ 𝜎

𝛽 = −𝑖𝜎 ⊗ 𝜎 ⊗ 𝜎 ⊗ 𝜎 ⊗ 𝜎

                                                          (3.5)  

 
  Then, in defining the operators 
 

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧𝒴 =

𝑖

4
[𝛼 , 𝛽 ] =

1

2
𝑖𝛼 𝛽 = −

1

2
𝜎 ⊗ 𝜎 ⊗ 𝜎 ⊗ 𝜎 ⊗ 𝜎

𝒴 =
𝑖

6
[𝛼 , 𝛽 ] =

1

3
𝑖𝛼 𝛽 = −

1

3
𝜎 ⊗ 𝜎 ⊗ 𝜎 ⊗ 𝜎 ⊗ 𝜎

𝒴 =
𝑖

6
[𝛼 , 𝛽 ] =

1

3
𝑖𝛼 𝛽 = −

1

3
𝜎 ⊗ 𝜎 ⊗ 𝜎 ⊗ 𝜎 ⊗ 𝜎

𝒴 =
𝑖

6
[𝛼 , 𝛽 ] =

1

3
𝑖𝛼 𝛽 = −

1

3
𝜎 ⊗ 𝜎 ⊗ 𝜎 ⊗ 𝜎 ⊗ 𝜎

𝒴 =
𝑖

6
[𝛼 , 𝛽 ] =

1

2
𝑖𝛼 𝛽 = −

1

2
𝜎 ⊗ 𝜎 ⊗ 𝜎 ⊗ 𝜎 ⊗ 𝜎

           (3.6) 

and 

⎩
⎪
⎨

⎪
⎧ 𝐼 =

1

2
𝒴 −

1

2
𝒴

𝑌 = 𝒴 + 𝒴 + 𝒴 + 𝒴 + 𝒴

𝑄 = 𝒴 +
1

2
𝒴 +

1

2
𝒴 +

1

2
𝒴

𝒞 = 𝒴 + 𝒴 + 𝒴

                                                                (3.7) 

it can be seen (c.f table 1 below) that the eigenvalues of the operators 𝐼 , 𝑌  and 𝑄 correspond 
respectively to the weak isospin, weak hypercharge and electric charge of a single fermion 
generation of the Standard Model.
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⎩
⎪
⎨

⎪
⎧ 𝐼 =

1

2
𝒴 −

1

2
𝒴

𝑌 = 𝒴 + 𝒴 + 𝒴 + 𝒴 + 𝒴

𝑄 = 𝒴 +
1

2
𝒴 +

1

2
𝒴 +

1

2
𝒴

    𝒞 = 𝒴 + 𝒴 + 𝒴

  𝑄 = 𝐼 +
1

2
𝑌 = 𝒴 +

1

2
𝒞 

 
The operator 𝒞  has also some interesting properties related to the nature of the particles. The 
eigenvalues of  𝒞 are integer numbers for leptons and fractional numbers for quarks. 
As it may be expected, the relationship between the electric charge 𝑄, the weak isospin 𝐼   
,the weak hypercharge 𝑌     is an analog of the Gellmann-Nishijima. The existence of right 
handed (sterile) neutrino is obtained.

N° 𝓨𝟎 𝓨𝟏 𝓨𝟐 𝓨𝟑 𝓨𝟒 𝑰𝟑 𝒀𝑾 𝑸 𝓒 Particle 
1 −1/2 −1/3 −1/3 −1/3 −1/2 0 −2 −1 −1 𝒆𝑹 
2 −1/2 −1/3 −1/3 −1/3 1/2 −1/2 −1 −1 −1 𝒆𝑳  
3 −1/2 −1/3 −1/3 1/3 −1/2 0 −4/3 −2/3 −1/3 𝒖  
4 −1/2 −1/3 −1/3 1/3 1/2 −1/2 −1/3 −2/3 −1/3 𝒖  
5 −1/2 −1/3 1/3 −1/3 −1/2 0 −4/3 −2/3 −1/3 𝒖  
6 −1/2 −1/3 1/3 −1/3 1/2 −1/2 −1/3 −2/3 −1/3 𝒖  
7 −1/2 −1/3 1/3 1/3 −1/2 0 −2/3 −1/3 1/3 𝒅  
8 −1/2 −1/3 1/3 1/3 1/2 −1/2 1/3 −1/3 1/3 𝒅  
9 −1/2 1/3 −1/3 −1/3 −1/2 0 −4/3 −2/3 −1/3 𝒖  
10 −1/2 1/3 −1/3 −1/3 1/2 −1/2 −1/3 −2/3 −1/3 𝒖  
11 −1/2 1/3 −1/3 1/3 −1/2 0 −2/3 −1/3 1/3 𝒅  
12 −1/2 1/3 −1/3 1/3 1/2 −1/2 1/3 −1/3 1/3 𝒅  
13 −1/2 1/3 1/3 −1/3 −1/2 0 −2/3 −1/3 1/3 𝒅  
14 −1/2 1/3 1/3 −1/3 1/2 −1/2 1/3 −1/3 1/3 𝒅  
15 −1/2 1/3 1/3 1/3 −1/2 0 0 0 1 𝝂𝑹 
16 −1/2 1/3 1/3 1/3 1/2 −1/2 1 0 1 𝝂𝑳 
17 1/2 −1/3 −1/3 −1/3 −1/2 1/2 −1 0 −1 𝝂𝑳 
18 1/2 −1/3 −1/3 −1/3 1/2 0 0 0 −1 𝝂𝑹 
19 1/2 −1/3 −1/3 1/3 −1/2 1/2 −1/3 1/3 −1/3 𝒅𝑳

𝒃𝒍𝒖𝒆 
20 1/2 −1/3 −1/3 1/3 1/2 0 2/3 1/3 −1/3 𝒅𝑹

𝒃𝒍𝒖𝒆 
21 1/2 −1/3 1/3 −1/3 −1/2 1/2 −1/3 1/3 −1/3 𝒅𝑳

𝒈𝒓𝒆𝒆 
22 1/2 −1/3 1/3 −1/3 1/2 0 2/3 1/3 −1/3 𝒅𝑹

𝒈𝒓𝒆𝒆𝒏 
23 1/2 −1/3 1/3 1/3 −1/2 1/2 1/3 2/3 1/3 𝒖  
24 1/2 −1/3 1/3 1/3 1/2 0 4/3 2/3 1/3 𝒖  
25 1/2 1/3 −1/3 −1/3 −1/2 1/2 1/3 1/3 −1/3 𝒅𝑳

𝒓𝒆𝒅 
26 1/2 1/3 −1/3 −1/3 1/2 0 2/3 1/3 −1/3 𝒅𝑹

𝒓𝒆𝒅 
27 1/2 1/3 −1/3 1/3 −1/2 1/2 1/3 2/3 1/3 𝒖  
28 1/2 1/3 −1/3 1/3 1/2 0 4/3 2/3 1/3 𝒖  
29 1/2 1/3 1/3 −1/3 −1/2 1/2 1/3 2/3 1/3 𝒖  
30 1/2 1/3 1/3 −1/3 1/2 0 4/3 2/3 1/3 𝒖  
31 1/2 1/3 1/3 1/3 −1/2 1/2 1 1 1 𝒆𝑳 
32 1/2 1/3 1/3 1/3 1/2 0 2 1 1 𝒆𝑹 
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The previous results show that all of the particles belonging to a single generation of the 
Standard Model can be described with a single general spinor field 𝝍 

𝝍 = 𝝍𝒂𝜁 = 𝝍𝒆 + 𝝍𝒖 + 𝝍𝝂 + +𝝍𝒅 = (𝚷𝒆 + 𝚷𝒖 + 𝚷𝝂 + 𝚷𝒅)𝝍               (3.8) 

the index 𝑎 runs from 1 to 32.The elements 𝜁  of the considered basis are eigenspinors of the 
operators  𝒴 , 𝒴 , 𝒴 , 𝒴 , 𝒴 , 𝐼 , 𝑌 , 𝑄 and 𝒞. 𝚷𝒆, 𝚷𝒖, 𝚷𝝂, 𝚷𝒅are respectively the operators 
corresponding to the projections in the spinor subspaces of electron type field, quark up type 
field, neutrino type field and quark down type field. The explicit expressions of these 
projections operators are given in [8]. 

 4-General fermions fields and fermions states in phase space representation  

  The results obtained in the section 2 and 3 suggest that we may consider a phase space 
representation of the general spinor field 𝝍 in the form 
 

𝝍(𝑥) =
𝑑 �⃗�𝑑 �⃗�

(2𝜋)
[𝕒 �⃗�, �⃗�, ℬ , 𝑠 �⃑� �⃗�, �⃗�, ℬ , 𝑠 𝑒  

   +𝕓 �⃗�, �⃗�, ℬ , 𝑠 �⃑� �⃗�, �⃗�, ℬ , 𝑠 𝑒 ]𝑒 ℬ ( )( )       (4.1) 
 
The index 𝑠 refers to the set of quantum number describing the particle nature and internal 
state (isospin, electric charge, colors,...). According to this decomposition a fermion particle 
state in the phase space representation is of the form  �⃗�, �⃗�, ℬ , 𝑠  .  �⃗� and �⃗� being the means 
of its momentum and coordinate vectors and ℬ  the momentum dipersion-codispersion 
(statistical variance –covariance) tensor. It corresponds to ℬ  a coordinate dispersion-
codispersion tensor  𝒜  so that we have a saturation of the Heisenberg principle  
 

𝒜 ℬ =
1

4
𝛿 (ℏ)                                                                 (4.2) 

 
When a particle propagates, we may associate to it a “mean trajectory” with equation  
�⃗� = �⃗�(𝑋 )  , �⃗� = �⃗�(𝑋 ). This mean trajectory may be related to the classical concept of 
trajectory in the classical limit.  
 
 
5-Conclusion 
  

  The phase space representation provides the possibility to consider at the same time the 
momentum and coordinate of a particle, taking into account the Heisenberg uncertainty 
principle. It provides an interesting framework for the study of fermions and their properties. 
It permits in particular to describe fundamental properties, like isospin, electric charge and 
color, as a natural consequence of the spinorial representation of linear canonical 
transformations like spin is described as a natural consequence of the spinorial representation 
of Lorentz transformations. These results suggest the possibility of extending our approach   
to establish an unified theory of interactions.  The phase space representation may also be 
used in the study of the relation between classical and quantum theories.     
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