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Abstract
In this paper, transition probability for two flavor neutrino oscil-
lations has been calculated in using the Dirac equation and compared
with the exact transition probability obtained in using quantum field
theory.
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Neutrino oscillation is usually understood as the transition from a neutrino
flavor state to another neutrino flavor state depending on the distance trav-
eled [1]. Neutrino flavor states v, v,, v, are superpositions of the neutrino
mass eigenstates. Although there are three neutrino flavors two flavor neu-
trino oscillations exists in nature: for example v, — v,, in atmospheric
neutrinos [2]. We suppose that a neutrino is Dirac neutrino, that is neutrino
is not its own antiparticle.

Using Quantum field theory the exact transition probability Porr (v, — v7, (¢, %))
has been obtained in [3]. This transition probability recovers the Pontecorvo’s
one Pyrom (v — vy, (t, 7)) obtained in using nonrelativistic quantum me-
chanics [4]. In this paper we look for a transition probability Proa (v, — v7, (¢, %))
in using relativistic quantum mechanics, more precisely the Dirac equation.
It will be a realization of the possibility of utilization of an hamiltonian from
the Dirac equation [5].
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1 Dirac wave functions

The Dirac equation
ihy o,v (t, %) —mev (t,2) =0

where v*’s are the gamma matrices, h is the Planck constant, ¢ the speed of
light, m the mass of the mass eigenstate of the spin—% fermion.

The wave function v = v (¢, Z) solution of the Dirac equation may be written
as Kronecker product or tensor product

v(t, ) =€® se”h(EEI—P7) (1)
with s is an eigeinstate of the helicity operator gc?.ﬁ = g’nlal —i-g‘ngag—i-g‘ngag,
with 7 = ﬁ = %, ¢ is an eigeinstate of what we call the operator of sign

of energy hp = ecpa’ + mc?o® [6], with € is the sign of the helicity. There
should be the probabilities of having positive energy and negative energy [7].
These probabilities should have impact on the transition probability.

2 'Transition probability

From now on let us use the natural unit ¢ = 1 and A = 1. The first factors
of the two mass eigenstates with positive energies are
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at time ¢ = 0.

The probabilities for having the same sign of energies and different sign
of energies at t = 0 are respectively
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and with negative energies are

0.0 - [P (—E
52(0’0>>_ 2E, ( 1 ’

N Ey 4+ ms) (Es + m3)
and
. . (Ey + ma) (B3 + ma3) < €3D3 €22 )2
P{SigE Sighks, t =0} = —
{ g2 ?é g3 } 4E2E3 E3 + ms E2 + mo

2



with €5 and €3 are the helicity signs of the mass eigenstates at (¢, %) = (0, 6)
[8].

For the second factor of the mass eigenstates, the eigenstates of helicity
sign operator p = Bo+ B2 203+ B3 Bos, in spherical coordinates (p, 0, ¢), are
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for positive helicity and
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and
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are respectively the probabilities for having respectively same sign of helicities
and different signs of helicities at time ¢ = 0 for the mass eigenstates.
We suppose that py and p3 are in the same direction, then P(es = €3) = 1.

P (v, — vy, (t,7)/SigEy = SigEs) = sin®(2043)sin’ <<E3 — Bt ;_ (P — pg).x>

with By = /p3 + m3 and E3 = /p3 + m3.

P (v, — vr, (1,3)/SigEs # SigEs) = sin®(2053)sin” <<E3 + Byt + (P2 — p?,).x)

2
Probability calculus with these probabilities yield
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which is equal to the exact transition probability Popr (v, — vr, (¢, &

PRQM (V‘u — Ur, (t, Zf)) = Sin2(2923)
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Conclusion

Supposing that in the Dirac theory a Spin-%, has the probabilities of having
positive energy and negative energy and the moments ps and p3 of the mass
eigenstates are in the same direction, then

—

PRQM (Vu — Vs, (taf)) - PQFT (Vu — Ur, (t,l’))
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