XYZ-like Spectra from Laplace sum rules at N2LO in the chiral limit

S.G. RANDRIAMANATRIKA

Institute of High Energy Physics of Madagascar

7 septembre 2018

HEPMAD 18

S.G. RANDRIAMANATRIK

Exotic states from QSSR in the chiral Limit

- Discoveries of new states on charmonium (bottomium) spectroscopy having unconventionnal hadronic structure (e.g $X_c(3872)$ and $Z_c(3900)$ 1⁺⁺ states ,Y(4260) 1⁻⁻ states).
- Exotic structures, such as molecule and/or fourquark states, could be a possible explanation about their nature.
- QCD spectral sum rules used to determine hadronic parameters.
- Analysis of XYZ-like spectra using this method have been done but only in the lowest order of perturbation.
- Estimation of molecule and four-quark states couplings and masses at higher orders with methods of Laplace Sum Rules.

- Heavy-light molecule and fourquark states currents
- Section 2 Constant Coupling From QCDSSR.
- \bigcirc 0⁻ molecule states.
- \bigcirc 1⁻ molecule states.
- Summary

Masse and Coupling from Laplace Sum Rules

$$\begin{aligned} \mathsf{Mass} &: M_H^2 = \frac{\int_{4m_Q^2}^{t_c} dt \ t \ e^{-t\tau} \frac{1}{\pi} \mathrm{Im} \Pi^{OPE}(t)}{\int_{4m_Q^2}^{t_c} dt \ e^{-t\tau} \frac{1}{\pi} \mathrm{Im} \Pi^{OPE}(t)} \\ \mathsf{Coupling} &: f_H^2 = \frac{\int_{4m_Q^2}^{t_c} dt \ e^{-t\tau} \frac{1}{\pi} \mathrm{Im} \Pi^{OPE}(t)}{e^{-\tau M_H^2} M_H^8} \end{aligned}$$

$$\rho^{OPE} = \frac{1}{\pi} \text{Im}\Pi^{OPE}(t)$$

$$= \rho_{pert} \left(1 + \frac{NLO + N2LO}{LO} \right) + \rho_{\langle q\bar{q} \rangle} + \rho_{\langle g^2G^2 \rangle} + \rho_{\langle qq \rangle^2} +$$

Masse and Coupling from Laplace Sum Rules

- Assumption of a factorization of the four-quark currents for the evaluation of perturbative part at NLO and N2LO.
- Plot of curves of M, f as function of τ for differents values of tc
- Optimal results obtained by applying stability criteria(inflexion point, minimum)
- Extraction of values from tc corresponding to the beginning of τ -stability and the one where tc-stability is reached.
- Requirements : the pole contribution is larger than the continuum one, convergence of PT-series.

Interpolating currents with defenite C-parity Molecule states

0++ Scalar $\begin{array}{ll} \bar{D}D, \ \bar{B}B & (\bar{q}\gamma_5 Q)(\bar{Q}\gamma_5 q) \\ \bar{D}^* D^*, \bar{B}_{-}^* B^* & (\bar{q}\gamma_\mu Q)(\bar{Q}\gamma^\mu q) \end{array}$ $\bar{D}_0^* D_0^*, \ \bar{B}_0^* B_0^* \qquad (\bar{q}Q)(\bar{Q}q)$ $\mathbf{1}^{++} \stackrel{(\bar{q}\gamma_{\mu}\gamma_{5}Q)}{(\bar{Q}\gamma^{\mu}\gamma_{5}q)}$ $D_1 D_1, B_1 B_1$ Axial-vector $\frac{i}{\sqrt{2}} \begin{bmatrix} (\bar{Q}\gamma_{\mu}q)(\bar{q}\gamma_{5}Q) - (\bar{q}\gamma_{\mu}Q)(\bar{Q}\gamma_{5}q) \\ \frac{1}{\sqrt{2}} \end{bmatrix} \\ (\bar{q}Q)(\bar{Q}\gamma_{\mu}\gamma_{5}q) + (\bar{Q}q)(\bar{q}\gamma_{\mu}\gamma_{5}Q) \end{bmatrix}$ $\bar{D}^*D, \ \bar{B}^*B$ $\bar{D}_0^* D_1, \ \bar{B}_0^* B_1$ Pseudoscalar 0^{-±} $\frac{1}{\sqrt{2}} \begin{bmatrix} (\bar{q}Q)(\bar{Q}\gamma_5 q) \pm (\bar{Q}q)(\bar{q}\gamma_5 Q) \\ \frac{1}{\sqrt{2}} \end{bmatrix} \\ (\bar{Q}\gamma_\mu q)(\bar{q}\gamma^\mu \gamma_5 Q) \mp (\bar{Q}\gamma_\mu \gamma_5 q)(\bar{q}\gamma^\mu Q) \end{bmatrix}$ $\bar{D}_0^*D,\ \bar{B}_0^*B$ $\bar{D}^*D_1, \ \bar{B}^*B_1$ $1^{-\pm}$ Vector $\frac{1}{\sqrt{2}} \begin{bmatrix} (\bar{q}Q)(\bar{Q}\gamma_{\mu}q) \mp (\bar{Q}q)(\bar{q}\gamma_{\mu}Q) \\ \frac{i}{\sqrt{2}} \end{bmatrix} (\bar{Q}\gamma_{\mu}\gamma_{5}q)(\bar{q}\gamma_{5}Q) \pm (\bar{q}\gamma_{\mu}\gamma_{5}Q)(\bar{Q}\gamma_{5}q) \end{bmatrix}$ $\bar{D}_{0}^{*}D^{*}, \ \bar{B}_{0}^{*}B^{*}$ $\bar{D}D_1, \ \bar{B}B_1$

$$\begin{aligned} \mathbf{Scalar} & \mathbf{0}^{+} \ \epsilon_{abc} \epsilon_{dec} \left[\left(q_{a}^{T} \ C \gamma_{5} \ Q_{b} \right) \left(\bar{q}_{d} \ \gamma_{5} C \ \bar{Q}_{e}^{T} \right) + k \left(q_{a}^{T} \ C \ Q_{b} \right) \left(\bar{q}_{d} \ C \ \bar{Q}_{e}^{T} \right) \right] \\ \mathbf{Axial-vector} & \mathbf{1}^{+} \ \epsilon_{abc} \epsilon_{dec} \left[\left(q_{a}^{T} \ C \gamma_{5} \ Q_{b} \right) \left(\bar{q}_{d} \ \gamma_{\mu} C \ \bar{Q}_{e}^{T} \right) + k \left(q_{a}^{T} \ C \ Q_{b} \right) \left(\bar{q}_{d} \ \gamma_{\mu} \gamma_{5} C \ \bar{Q}_{e}^{T} \right) \right] \\ \mathbf{Pseudoscalar} & \mathbf{0}^{-} \ \epsilon_{abc} \epsilon_{dec} \left[\left(q_{a}^{T} \ C \gamma_{5} \ Q_{b} \right) \left(\bar{q}_{d} \ C \ \bar{Q}_{e}^{T} \right) + k \left(q_{a}^{T} \ C \ Q_{b} \right) \left(\bar{q}_{d} \ \gamma_{5} C \ \bar{Q}_{e}^{T} \right) \right] \\ \mathbf{Vector} & \mathbf{1}^{-} \ \epsilon_{abc} \epsilon_{dec} \left[\left(q_{a}^{T} \ C \gamma_{5} \ Q_{b} \right) \left(\bar{q}_{d} \ \gamma_{\mu} \gamma_{5} C \ \bar{Q}_{e}^{T} \right) + k \left(q_{a}^{T} \ C \ Q_{b} \right) \left(\bar{q}_{d} \ \gamma_{\mu} C \ \bar{Q}_{e}^{T} \right) \right] \end{aligned}$$

- Use of the same strategies and approaches for the heavy-light molecule and fourquark states study.
- Analysis of the $\bar{D}D~0^{++}$ and $\bar{D}_0^*D~0^{-\pm}$ molecule states as illustrations.

$ar{D}D \ 0^{++}$ Molécule state

FIGURE – $f_{\bar{D}D}$ and $M_{\bar{D}D}$ at LO as function of τ for different values of t_c , for μ =4.5 GeV

FIGURE – $f_{\bar{D}D}$ and $M_{\bar{D}D}$ at NLO as function of τ for different values of $t_c, {\rm for}$ $\mu{=}4.5~{\rm GeV}$

$ar{D}D \ 0^{++}$ Molécule state

FIGURE – $f_{\bar{D}D}$ and $M_{\bar{D}D}$ at N2LO as function of τ for different values of $t_c, {\rm for}$ $\mu{=}4.5~{\rm GeV}$

- beginning of au-stability : t_c = 23 GeV², au \simeq 0.25 GeV⁻²
- t_c -stability starts to be reached : t_c = 32 GeV², $\tau \simeq$ 0.35 GeV⁻²

 $\rm FIGURE$ – $f_{\bar{D}D}$ and $M_{\bar{D}D}$ as function of τ for t_c = 32 GeV², for $\mu \rm = 4.5$ GeV,for different truncation of the PT series

• NLO \rightarrow N2LO : the coupling increases about 3.6 %

 $\bullet~\text{NLO} \rightarrow \text{N2LO}$: the mass decreases about 1 per mil

$ar{D}D \ 0^{++}$ Molécule state

 $\rm FIGURE-\hat{f}_{\bar{D}D}$ and $M_{\bar{D}D}$ as function of μ for the corresponding $\tau\text{-stability region,}$ for $t_c=32GeV^2$

- The optimal results deduced at $\mu \simeq 4.5 {\rm GeV}$
- $f_{ar{D}D}\simeq 170(15)$ keV and $M_{ar{D}D}\simeq 3898(36)$ GeV

$ar{D}_0^* D \,\, 0^{-\pm}$ Molécule state

FIGURE – $f_{\bar{D}_0^*D}$ and $M_{\bar{D}_0^*D}$ at LO as function of τ for different values of t_c , for μ =4.5 GeV

 $\rm FIGURE$ – $f_{\bar{D}_0^*D}$ and $M_{\bar{D}_0^*D}$ at NLO as function of τ for different values of $t_c, {\rm for}$ $\mu{=}4.5~{\rm GeV}$

FIGURE – $f_{\bar{D}_0^*D}$ and $M_{\bar{D}_0^*D}$ at N2LO as function of τ for different values of t_c ,for μ =4.5 GeV

- beginning of τ -stability : t_c = 42 GeV²
- t_c -stability starts to be reached : t_c = 48 GeV²

FIGURE – $f_{\bar{D}_0^*D}$ and $M_{\bar{D}_0^*D}$ as function of τ for $t_c =$ 42 GeV², for μ =4.5 GeV,for different truncation of the PT series

- $\bullet~$ NLO \rightarrow N2LO : the coupling increases about 7 %
- $\bullet~\text{NLO} \rightarrow \text{N2LO}$: the mass decreases about 2 %

$ar{D}_0^* D \,\, 0^{-\pm}$ Molécule state

 $\rm FIGURE$ – $\hat{f}_{\bar{D}_0^*D}$ and $M_{\bar{D}_0^*D}$ as function of μ for the corresponding τ -stability region, for $t_c=42GeV^2$

- The optimal results deduced at $\mu \simeq 4.5 {\rm GeV}$
- $f_{\bar{D}D}\simeq 257(19)$ keV and $M_{\bar{D}D}\simeq 5690(140)$ GeV

TABLE – $\overline{D}D$ -like.

Channels		\hat{f}_M	$f_M[keV]$				M_M [GeV]		
	LO	NLO	N2LO	LO	NLO	N2LO	LO	NLO	N2LO
Scalar(0 ⁺⁺)									
$\bar{D}D$	56	60	62(6)	155	164	170(15)	3901	3901	3898(36)
\bar{D}^*D^*	-	-	-	269	288	302(47)	3901	3903	3903(179)
$\bar{D}_{0}^{*}D_{0}^{*}$					97(15)	114(18)		4003(227)	3954(224)
$\overline{D}_{1}^{\circ}\overline{D}_{1}^{\circ}$					236(32)	274(37)		3858(57)	3784(56)
Axialvector($1^{+\pm}$)					. ,	. ,			. ,
\bar{D}^*D	87	93	97(10)	146	154	161(17)	3901	3901	3903(62)
$\bar{D}_{0}^{*}D_{1}$	48	71	83(10)	81	118	137(16)	4394	4395	4401(164)
$Pseudo(0^{-\pm})$. ,			. ,			. ,
$\bar{D}_0^* D$	68	88	94(7)	190	240	257(19)	5956	5800	5690(140)
$\overline{D}^* D_1$	-	-	-	382	490	564(38)	6039	5898	5787(191)
Vector($1^{}$)						. ,			. ,
$\bar{D}_{0}^{*}D^{*}$	112	143	157(10)	186	238	261(17)	6020	5861	5748(101)
$\overline{D}D_1$	98	126	139(13)	164	209	231(21)	5769	5639	5544(162)
Vector(1^{-+})			. ,			. ,			. ,
$\bar{D}_{0}^{*}D^{*}$	105	135	150(13)	174	224	249(22)	6047	5920	5828(132)
DD_1	97	128	145(15)	162	213	241(25)	5973	5840	5748 (179)

TABLE – $\overline{B}B$ -like.

Channels	\hat{f}_M [keV]				f_M [keV]			M_M [GeV]		
	LO	NLO	N2LO	LO	NLO	N2LO	LO	NLO	N2LO	
Scalar(0 ⁺⁺)										
$\bar{B}B$	4.0	4.4	5(1)	14.4	15.6	17(4)	10605	10598	10595(58)	
\bar{B}^*B^*	-	-	-	27	30	32(5)	10626	10646	10647(184)	
$\bar{B}_{0}^{*}B_{0}^{*}$	2.1	3.2	4(1)	7.7	11.3	14(4)	10653	10649	10648(113)	
$\bar{B}_1 B_1$					20(3)	28.6(4)		10514(149)	10514(149)	
Axialvector($1^{+\pm}$)					. ,	. ,		. ,	. ,	
\bar{B}^*B	7	8	9(3)	14	16	17(6)	10680	10673	10646(150)	
$\bar{B}_{0}^{*}B_{1}$	4	6	7(1)	8	11	14(2)	10670	10679	10692(132)	
$Pseudo(0^{-\pm})$. ,			. ,	
\bar{B}_0^*B	11	16	20(3)	39	55	67(10)	12930	12737	12562(260)	
\bar{B}^*B_1	-	-	-	71	105	136(19)	12967	12794	12627(225)	
Vector($1^{}$)						. ,			. ,	
$\bar{B}_{0}^{*}B^{*}$	21	29	35(6)	39	54	66(11)	12936	12756	12592(266)	
$\ddot{BB_1}$	21	29	35(7)	39	54	65(12)	12913	12734	12573(257)	
Vector(1^{-+})			. ,			. ,			. ,	
$\bar{B}_{0}^{*}B^{*}$	20	29	34(4)	38	54	64(8)	12942	12774	12617(220)	
BB_1	20	29	35(5)	37	53	65(9)	12974	12790	12630(236)	

TABLE – Fourquark Q=c.

Channels	\hat{f}_M [keV]				f_M [œV]	M_M [GeV]		
	LO	NLO	N2LO	LO	NLO	N2LO	LO	NLO	N2LO
c-quark									
$S_{c}(0^{+})$	62	67	70(7)	173	184	191(20)	3902	3901	3898(54)
$A_{c}(1^{+})$	100	106	112(18)	166	176	184(30)	3903	3890	3888(130)
$\pi_{c}(0^{-})$	84	106	113(5)	233	292	310(13)	6048	5872	5750(127)
$V_{c}(1^{-})$	123	162	178(11)	205	268	296(19)	6062	5904	5793(122)

TABLE – Fourquark Q=b.

Channels	\hat{f}_M [keV]				$f_M[k$	æV]	M_M [GeV]			
	LO	NLO	N2LO	LO	NLO	N2LO	LO	NLO	N2LO	
b-quark										
$S_b(0^+)$	4.6	5.0	5.3(1.1)	16	17	19(4)	10652	10653	10654(109)	
$A_b(1^+)$	8.7	9.5	10(2)	16	18	19(3)	10730	10701	10680(172)	
$\pi_b(0^-)$	18	23	27(3)	62	83	94(11)	13186	12920	12695(254)	
$V_{b}(1^{-})$	24	33	40(5)	45	62	75(9)	12951	12770	12610(242)	

- Improvement of all previous works about the masses and couplings of exotic mesons at LO using QCD spectral sum rules.
- New compact and integrated expressions of the heavy light molecule and fourquark states spectral functions at the lowest order of perturbation and up to d=8 condensates of the OPE.
- The masses of X_c(3872), Z_c(3900,4200,4430) observed states are compatible with (almost) pure $1^{+\pm}$, 0^{++} molecule or/and four-quark states.
- The masses of $1^{-\pm}$ molecule and/or fourquark states in c-chanel in the range of (5646-5961)MeV are about 1.5 GeV above the Y_c(4260,4360,4660) and the ones in b-chanel (12326-12829) MeV are also too high compared with the Y_b(9898,10260,10870) experimental candidates.
- The molecule and/or fourquark states couplings are much weaker than ordinary couplings such as $f_{D,B}$

THANK YOU!!!