## XYZ-SU3 Breakings from LSR at N2LO

#### D. Rabetiarivony\*,

In collaboration with: R. Albuquerque\*\*, S. Narison\*\*\*, A. Rabemananjara\*,

G. Randriamanatrika\*

\* Institute of High Energy Physcs of Madagascar (iHEPMAD) \*\* Faculty of Technology, Rio de Janeiro State University (FAT, UERJ), Brazil \*\*\* Laboratoire Univers et Particules de Montpellier (LUPM), CNRS-IN2P3, France







#### TABLE – Interpolating currents describing the molecule states

 $\begin{array}{lll} & {\rm Scalar} & {\rm 0}^{++} \\ & \bar{D}D, \ \bar{B}B & (\bar{q}\gamma_5Q)(\bar{Q}\gamma_5q) \\ & \bar{D}^*D^*, \ \bar{B}^*B^* & (\bar{q}\gamma_\mu Q)(\bar{Q}\gamma^\mu q) \\ & \bar{D}_0^*D_0^*, \ \bar{B}_0^*B_0 & (\bar{q}Q)(\bar{Q}\gamma^\mu q) \\ & \bar{D}_1D_1, \ \bar{B}_1B_1 & (\bar{q}\gamma_\mu \gamma_5Q)(\bar{Q}\gamma^\mu \gamma_5q) \\ & {\rm Axial-vector} & {\rm 1}^{++} \\ & \bar{D}^*D, \ \bar{B}^*B & \frac{1}{\sqrt{2}} \left[ (\bar{Q}\gamma_\mu q)(\bar{q}\gamma_5Q) - (\bar{q}\gamma_\mu Q)(\bar{Q}\gamma_5q) \right] \\ & {\rm Axial-vector} & {\rm 0}^{-\pm} \\ & {\rm Pseudoscalar} & {\rm 0}^{-\pm} \\ & {\rm Pseudoscalar} & {\rm 0}^{-\pm} \\ & \bar{D}_0^*D, \ \bar{B}_0^*B & \frac{1}{\sqrt{2}} \left[ (\bar{q}Q)(\bar{Q}\gamma_5q) \pm (\bar{Q}q)(\bar{q}\gamma_5Q) \right] \\ & \bar{D}^*D_1, \ \bar{B}^*B_1 & \frac{1}{\sqrt{2}} \left[ (\bar{q}Q)(\bar{Q}\gamma_\mu q)(\bar{q}\gamma^\mu \gamma_5Q) \mp (\bar{Q}\gamma_\mu \gamma_5q)(\bar{q}\gamma^\mu Q) \right] \\ & {\rm Vector} & {\rm 1}^{-\pm} \\ & \bar{D}_0^*D^*, \ \bar{B}_0^*B^* & \frac{1}{\sqrt{2}} \left[ (\bar{q}Q)(\bar{Q}\gamma_\mu q) \mp (\bar{Q}q)(\bar{q}\gamma_\mu Q) \right] \\ & \bar{D}D_1, \ \bar{B}B_1 & \frac{i}{\sqrt{2}} \left[ (\bar{q}Q)(\bar{Q}\gamma_5Q) \pm (\bar{q}\gamma_\mu \gamma_5Q)(\bar{Q}\gamma_5q) \right] \end{array} \right]$ 

 $\ensuremath{\mathrm{TABLE}}$  – Interpolating currents describing the 4-quark states

$$\begin{aligned} & \mathbf{Scalar} \qquad \mathbf{0}^{+} \ \epsilon_{abc} \epsilon_{dec} \left[ \left( q_{a}^{T} \ C \gamma_{5} \ Q_{b} \right) \left( \bar{q}_{d} \ \gamma_{5} C \ \bar{Q}_{e}^{T} \right) + k \left( q_{a}^{T} \ C \ Q_{b} \right) \left( \bar{q}_{d} \ C \ \bar{Q}_{e}^{T} \right) \right] \\ & \mathbf{Axial-vector} \quad \mathbf{1}^{+} \ \epsilon_{abc} \epsilon_{dec} \left[ \left( q_{a}^{T} \ C \gamma_{5} \ Q_{b} \right) \left( \bar{q}_{d} \ \gamma_{\mu} C \ \bar{Q}_{e}^{T} \right) + k \left( q_{a}^{T} \ C \ Q_{b} \right) \left( \bar{q}_{d} \ \gamma_{\mu} \gamma_{5} C \ \bar{Q}_{e}^{T} \right) \right] \\ & \mathbf{Pseudoscalar} \ \mathbf{0}^{-} \ \epsilon_{abc} \epsilon_{dec} \left[ \left( q_{a}^{T} \ C \gamma_{5} \ Q_{b} \right) \left( \bar{q}_{d} \ C \ \bar{Q}_{e}^{T} \right) + k \left( q_{a}^{T} \ C \ Q_{b} \right) \left( \bar{q}_{d} \ \gamma_{5} C \ \bar{Q}_{e}^{T} \right) \right] \\ & \mathbf{Vector} \qquad \mathbf{1}^{-} \ \epsilon_{abc} \epsilon_{dec} \left[ \left( q_{a}^{T} \ C \gamma_{5} \ Q_{b} \right) \left( \bar{q}_{d} \ \gamma_{\mu} \gamma_{5} C \ \bar{Q}_{e}^{T} \right) + k \left( q_{a}^{T} \ C \ Q_{b} \right) \left( \bar{q}_{d} \ \gamma_{\mu} C \ \bar{Q}_{e}^{T} \right) \right] \end{aligned}$$

## Introduction

- Masses and couplings of molecule and four-quark states at N2LO
- evaluation of the effect of SU(3) breakings.

#### **Double Ratio Sum Rules**

$$f^{sd} \equiv \frac{f^s_H(\tau, t_c, \mu)}{f^d_H(\tau, t_c, \mu)} , \quad r^{sd} \equiv \frac{M^s_H(\tau, t_c, \mu)}{M^d_H(\tau, t_c, \mu)},$$

the upper indices s, d indicate the s and d quark channels.

 $ar{D}_s D_s$  Molecule states  $ar{D}_s^* D_{s1}$  Molecule states Results

# XYZ-SU3 Breakings

The analysis will be illustrated,

- in the case of  $\bar{D}_s D_s$  for the  $0^{++}$  &  $1^{++}$  molecule and four-quark states,
- in the case of  $\bar{D}_{s0}^*D_s$  for the  $0^{-\pm}$  &  $1^{-\pm}$  molecule and four-quark states.

The results for the others will only be quoted.

XYZ-SU3 Breaking

 $\overline{D}_s D_s$  Molecule states  $\overline{D}_s^* D_{s1}$  Molecule states Results

## $\overline{D}_s D_s$ Molecule states



 ${\rm FIGURE}-\tau{\rm -behaviour}$  of coupling and mass at NLO for different values of  $t_c$  and for  $\mu=4.5{\rm GeV}$ 

XYZ-SU3 Breaking Summary  $D_s D_s D_s$  Molecule states  $D_s^* D_{s1}$  Molecule states Results



FIGURE –  $\tau$ -behaviour of SU3 ratios of couplings (masses)  $f_{DD}^{sd}$  (resp  $r_{DD}^{sd}$ ) at NLO for different values of  $t_c$  and for  $\mu = 4.5$ GeV

Final results : mean value of  $f_{\bar{D}_s D_s}$  (resp  $M_{\bar{D}_s D_s}$ ) obtained from a direct determination and from their SU3 ratios  $f_{\bar{D}D}^{sd}$  (resp  $r_{\bar{D}D}^{sd}$ ), at the minimum or inflection point for the common range of  $t_c$ .

$$\begin{split} f_{DD}^{sd} &= 0.950(4)_f(6)_{t_c}(0)_{\tau} \dots \implies f_{D_s D_s} = 156(8)_f(1)_{t_c}(0)_{\tau} \dots \text{keV} \\ r_{DD}^{sd} &= 1.069(1)_{t_c}(0)_{\tau} \dots \implies \mathsf{M}_{D_s D_s} = 4169(6)_M(4)_{t_c}(0)_{\tau} \text{MeV} \end{split}$$

 $D_s D_s$  Molecule states  $\bar{D}_s^* D_{s1}$  Molecule states Results

## $\bar{D}_{s}^{*}D_{s1}$ Molecule states



 $\rm FIGURE$  –  $\tau\text{-}behaviour$  of su3 ratio of couplings and mass at NLO for different values of  $t_c$  and for  $\mu=4.5\rm{GeV}$ 

By a direct determination :

$$\mathsf{M}_{\bar{D}_s^* D_{s1}} = 5724(176)_{t_c}(14)_{\tau} \dots \mathsf{MeV}$$



 ${\rm FIGURE}-\tau{\rm -behaviour}$  of coupling at NLO for different values of  $t_c$  and for  $\mu=4.5{\rm GeV}$ 

Taking the mean value of  $f_{\bar{D}_s^*D_{s1}}$  obtained from a direct determination and from the su3 ratio  $f_{\bar{D}^*D_1}^{sd}$ :

$$\begin{array}{lll} f_{\bar{D}^{*}_{s}D_{s1}} & = & 455(22)...\, {\rm keV} \\ f^{sd}_{\bar{D}^{*}D_{1}} & = & 0.93(1)... \end{array}$$

 $D_s D_s$  Molecule states  $\overline{D}_s^* D_{s1}$  Molecule states Results

### Results

TABLE –  $\overline{D}D$ -like molecules couplings, masses and their corresponding SU3 ratios from LSR within stability criteria at NLO to N2LO of PT.

| Channels                           | $f_M^{sd} \equiv f_{M_s}/f_M$ |          | $f_{M_s}$ [keV] |         | $r_M^{sd} \equiv M_{M_s}/M_M$ |           | M <sub>M e</sub> [MeV] |           |
|------------------------------------|-------------------------------|----------|-----------------|---------|-------------------------------|-----------|------------------------|-----------|
|                                    | NLÔ                           | N2LO     | NLO             | N2LO    | NLO                           | NŽLO      | NLO                    | N2LO      |
| Scalar(0 <sup>++</sup> )           |                               |          |                 |         |                               |           |                        |           |
| $\overline{D}_s D_s$               | 0.95(3)                       | 0.98(4)  | 156(17)         | 167(18) | 1.069(4)                      | 1.070(4)  | 4169(48)               | 4169(48)  |
| $\bar{D}_s^* D_s^*$                | 0.93(3)                       | 0.95(3)  | 265(31)         | 284(34) | 1.069(3)                      | 1.075(3)  | 4192(200)              | 4196(200) |
| $\bar{D}_{s0}^{*}\bar{D}_{s0}^{*}$ | 0.88(6)                       | 0.89(6)  | 85(12)          | 102(14) | 1.069(69)                     | 1.058(68) | 4277(134)              | 4225(132) |
| $\bar{D}_{s1} D_{s1}$              | 0.906(33)                     | 0.93(34) | 209(28)         | 229(31) | 1.097(7)                      | 1.090(7)  | 4187(62)               | 4124(61)  |
| Axial(1 <sup>++</sup> )            |                               |          |                 |         |                               |           |                        |           |
| $\bar{D}_s^* \bar{D}_s$            | 0.93(3)                       | 0.97(3)  | 143(16)         | 156(17) | 1.070(4)                      | 1.073(4)  | 4174(67)               | 4188(67)  |
| $\bar{D}_{s0}^{*} D_{s1}$          | 0.90(1)                       | 0.82(1)  | 87(14)          | 110(18) | 1.119(24)                     | 1.100(24) | 4269(205)              | 4275(206) |
| Pseudoscalar( $0^{-\pm}$ )         |                               |          |                 |         |                               |           |                        |           |
| $\bar{D}_{s0}^{*}D_{s}$            | 0.94(5)                       | 0.90(4)  | 225(24)         | 232(25) | 0.970(50)                     | 0.946(40) | 5604(223)              | 5385(214) |
| $\bar{D}_{s}^{*}D_{s1}$            | 0.93(4)                       | 0.90(4)  | 455(34)         | 508(38) | 0.970(50)                     | 0.972(34) | 5724(195)              | 5632(192) |
| Vector(1 <sup></sup> )             |                               |          |                 |         |                               |           |                        |           |
| $\bar{D}_{s0}^{*} D_{s}^{*}$       | 0.87(4)                       | 0.86(4)  | 208(11)         | 216(11) | 0.980(33)                     | 0.956(32) | 5708(184)              | 5571(180) |
| $\bar{D}_s \bar{D}_{s1}$           | 0.97(3)                       | 0.93(3)  | 202(12)         | 213(13) | 0.970(33)                     | 0.951(31) | 5459(122)              | 5272(120) |
| Vector( $1^{-+}$ )                 |                               |          |                 |         |                               |           |                        |           |
| $\bar{D}_{s0}^{*}D_{s}^{i}$        | 0.98(5)                       | 0.92(5)  | 219(17)         | 231(18) | 0.963(32)                     | 0.948(32) | 5699(184)              | 5528(179) |
| $\bar{D}_s D_{s1}$                 | 0.92(3)                       | 0.88(3)  | 195(13)         | 212(14) | 0.959(34)                     | 0.955(34) | 5599(155)              | 5487(152) |

 $\begin{array}{c} {\sf XYZ-SU3 \ {\sf Breaking}}\\ {\sf Summary} \end{array} \qquad \begin{array}{c} D_s D_s \ {\sf Molecule \ states}\\ \overline{D}_s^* D_{s1} \ {\sf Molecule \ states}\\ {\sf Results} \end{array}$ 

TABLE – BB-like molecules couplings, masses and their corresponding SU3 ratios from LSR within stability criteria at NLO to N2LO of PT.

| Channels                           | $f_M^{sd} \equiv f_{M_s}/f_M$ |           | $f_{M_s}$ [keV] |           | $r_M^{sd} \equiv M_{M_s}/M_M$ |           | $M_{M_s}$ [MeV] |            |
|------------------------------------|-------------------------------|-----------|-----------------|-----------|-------------------------------|-----------|-----------------|------------|
|                                    | NLÔ                           | NŽLO      | NLO             | N2LO      | NLO                           | NŽLO      | NLO             | N2LO       |
| Scalar(0 <sup>++</sup> )           |                               |           |                 |           |                               |           |                 |            |
| $\bar{B}_s B_s$                    | 1.04(4)                       | 1.15(4)   | 17(2)           | 20(2)     | 1.027(4)                      | 1.029(4)  | 10884(74)       | 10906(74)  |
| $\bar{B}^*_s B^*_s$                | 1.00(3)                       | 1.12(3)   | 31(5)           | 36(6)     | 1.028(5)                      | 1.029(5)  | 10944(134)      | 10956(134) |
| $\bar{B}_{s0}^{*}\bar{B}_{s0}^{*}$ | 1.11(5)                       | 1.07(5)   | 13(3)           | 17(4)     | 1.050(11)                     | 1.034(11) | 11182(227)      | 11014(224) |
| $\bar{B}_{s1}B_{s1}$               | 1.197(73)                     | 1.214(74) | 24(5)           | 29(6)     | 1.040(2)                      | 1.035(2)  | 10935(170)      | 10882(169) |
| Axial( $1^{+\pm}$ )                |                               |           |                 |           |                               |           |                 |            |
| $\bar{B}_{s}^{*}B_{s}$             | 1.01(3)                       | 1.18(4)   | 16.7(2)         | 20(2)     | 1.028(4)                      | 1.030(4)  | 10972(195)      | 10972(195) |
| $\bar{B}_{s0}^{*}B_{s1}$           | 0.80(4)                       | 0.79(4)   | 9.1(2.2)        | 10.7(2.6) | 1.052(14)                     | 1.031(14) | 11234(208)      | 11021(204) |
| Pseudo( $0^{-\pm}$ )               |                               |           |                 |           |                               |           |                 |            |
| $\bar{B}_{s0}^*B_s$                | 1.06(3)                       | 1.02(3)   | 58(3)           | 68(4)     | 1.00(3)                       | 1.00(3)   | 12725(217)      | 12509(213) |
| $\bar{B}_{s}^{*}B_{s1}$            | 0.96(4)                       | 0.95(4)   | 100(11)         | 118(13)   | 1.00(3)                       | 1.00(3)   | 12726(295)      | 12573(292) |
| Vector(1 <sup></sup> )             |                               |           |                 |           |                               |           |                 |            |
| $\bar{B}_{s0}^{*}B_{s}^{*}$        | 0.95(3)                       | 0.90(3)   | 51(4)           | 59(5)     | 1.00(3)                       | 0.99(3)   | 12715(267)      | 12512(263) |
| $\bar{B}_s B_{s1}$                 | 0.83(4)                       | 0.77(3)   | 45(3)           | 50(3)     | 0.99(3)                       | 0.99(3)   | 12615(236)      | 12426(233) |
| Vector( $1^{-+}$ )                 |                               |           |                 |           |                               |           |                 |            |
| $\bar{B}_{s0}^{*}B_{s}^{*}$        | 0.94(3)                       | 0.92(3)   | 51(5)           | 59(6)     | 1.00(3)                       | 0.99(3)   | 12734(262)      | 12479(257) |
| $\bar{B}_s B_{s1}$                 | 0.89(4)                       | 0.85(3)   | 48(5)           | 55(6)     | 0.99(3)                       | 0.98(3)   | 12602(247)      | 12350(242) |

 $\begin{array}{c} {\sf XYZ-SU3 \ {\sf Breaking}}\\ {\sf Summary}\end{array} \qquad \begin{array}{c} D_s D_s \ {\sf Molecule \ states}\\ \overline{D}_s^* D_{s1} \ {\sf Molecule \ states}\\ {\sf Results}\end{array}$ 

TABLE - 4-quark couplings, masses and their corresponding SU3 ratios from LSR within stability criteria at NLO and N2LO of PT.

| Channels          | $f_M^{sd} \equiv f_{M_s}/f_M$ |          | $f_{M_S}$ [keV] |         | $r_M^{sd} \equiv M_{M_s}/M_M$ |           | $M_{M_{\mathcal{S}}}$ [MeV] |             |
|-------------------|-------------------------------|----------|-----------------|---------|-------------------------------|-----------|-----------------------------|-------------|
|                   | NLO                           | N2LO     | NLO             | N2LO    | NLO                           | N2LO      | NLO                         | N2LO        |
| c-quark           |                               |          |                 |         |                               |           |                             |             |
| $S_{sc}(0^{+})$   | 0.91(4)                       | 0.98(4)  | 161(17)         | 187(19) | 1.085(11)                     | 1.086(11) | 4233(61)                    | 4233(61)    |
| $A_{sc}(1^{+})$   | 0.80(4)                       | 0.87(4)  | 141(15)         | 160(17) | 1.081(4)                      | 1.082(4)  | 4205(112)                   | 4209(112)   |
| $\pi_{sc}(0^{-})$ | 0.88(7)                       | 0.86(7)  | 256(29)         | 267(30) | 0.97(3)                       | 0.96(3)   | 5671(181)                   | 5524(176)   |
| $V_{sc}(1^-)$     | 0.91(10)                      | 0.87(10) | 245(31)         | 258(33) | 0.96(4)                       | 0.96(4)   | 5654(239)                   | 5539(234)   |
| b-quark           |                               |          |                 |         |                               |           |                             |             |
| $S_{sb}(0^{+})$   | 0.78(3)                       | 0.83(3)  | 22(5)           | 26(6)   | 1.044(4)                      | 1.048(4)  | 11122(149)                  | 11133((149) |
| $A_{sb}(1^{+})$   | 0.92(3)                       | 0.98(3)  | 22(4)           | 26(5)   | 1.042(6)                      | 1.046(6)  | 11150(172)                  | 11172(172)  |
| $\pi_{sb}(0^{-})$ | 0.80(7)                       | 0.76(4)  | 66(12)          | 71(13)  | 0.985(2)                      | 0.975(2)  | 12730(215)                  | 12374(209)  |
| $V_{sb}(1^-)$     | 0.97(6)                       | 0.90(6)  | 64(8)           | 68(9)   | 0.996(3)                      | 0.984(30) | 12716(272)                  | 12411(266)  |

1

1. R. Albuquerque et al., Int. J. Mod. Phys. A33 (2018) 1850082

D. Rabetiarivony\*, In collaboration with: *R. Albuquel* XYZ-SU3 Breakings from LSR at N2LO

- SU3 breakings are relatively small for the masses ≤ 10(resp.3)% for the charm (resp. bottom) channels while it can be large for the couplings (≤ 20%).
- The  $0^{++}$  X(4700) experimental candidate can be identified with a  $D_{s0}^* D_{s0}^*$  molecule state.
- The masses of  $1^{++}$  X(4147) and X(4273) are compatible within the error with the one of  $D_s^*D_s$  and the axial-vector  $A_{sc}$  four-quark state.
- For the bottom sector, experimental checks of our predictions are required.