Top quark measurements with ATLAS

Adam Bozson | Royal Holloway, University of London

HEPMAD 18 | Antananarivo, Madagascar | September 2018

Why study the top quark?

- Heaviest SM particle (172.5 GeV) •
 - Role in vacuum stability, Higgs sector
 - Background to exotic searches, Higgs measurements •
- Decays before hadronisation •
 - We can study a 'bare' quark
 - Allows precision QCD measurements •
- Window into new physics •
 - Same magnitude as ϕ vev (v = 246 GeV)

- LHC Run 2 @ 13 TeV is going very well •
 - 130 fb⁻¹ delivered to date, 3.2 fb⁻¹ in 2015, • 36.1 fb⁻¹ recorded by ATLAS in 2015+16
 - Approximately 1 tt pair produced each second •
- Very active area of ATLAS's research programme •
- Precision measurements now reaching <1% uncertainty •
 - Critical feedback for next-gen MC generators •
 - •

Useful for theorists: contraining EFTs, gluon PDF for large x, NNLO corrections

ATLAS top physics programme

- ATLAS has a rich top physics research programme link to public results
- tt, tt+X: differential cross sections in many variables, many 2D differential results
 - Unfolding to both particle and parton levels •
- Single top, t+X •
- Top quark mass and properties •
- Advanced analysis techniques used throughout • for increasingly precise measurements
- favourite some specific analyses, with emphasis on analysis methods

So much I could talk about. This talk gives an overview of each area, focuses on my

tt cross sections — motivation

- Cross sections are measured differentially •
- Theoretical motivation: constraining EFTs, gluon • PDF at high x, test predictions at highest precision
- tt(+X) is highly sensitive to BSM physics
- Major background to SM (e.g. ttH), exotic, SUSY • searches
- Top modelling / MC tuning •
 - Top p_T has been poorly described by some generators
- A range of final states separate our analyses •

tt cross sections — analysis channels

Top quark decays t→Wb

Lepton+Jets Resolved

Utilise both reconstruction techniques in same paper Unfold also in bins of N_{jets} (resolved only)

Adam Bozson <<u>adam.bozson@cern.ch</u>>

Lepton+Jets Boosted

Diagrams courtesy M. Fenton

tt cross sections — summary

- All analyses share common unfolding • strategy to fiducial volume at particle level
 - Some also unfold to parton level •
 - 2D unfolding increasingly possible •
- shower), jet energy scale/resolution

Adam Bozson <<u>adam.bozson@cern.ch</u>>

Systematics dominate uncertainties: top modelling (matrix element, parton

tt all-hadronic differential cross sections — event selection

- (prefers 3-pronged jets) (Link to top tagging note) — See Emma's talk!
- Both large-R jets contain an associated small-R b-tagged jet •
- Remaining background estimated using ABCD method with 16 regions •

Adam Bozson <adam.bozson@cern.ch>

Multijet background suppressed by top tagging algorithm: uses jet mass and τ_{32}

tt all-hadronic differential cross sec

- Link to paper: <u>arXiv:1801.02052</u> ullet
- Particle level leading top p_T and rapidity •

Adam Bozson <<u>adam.bozson@cern.ch</u>>

0.

0.

1.

tt all-hadronic differential cross sections — results

- Link to paper: <u>arXiv:1801.02052</u> •
- Particle level tt system p_T and invariant mass

Adam Bozson <adam.bozson@cern.ch>

tt+bb - strategy

- tt + b-jets challenges QCD calculations with the heavy b quark
- tt+bb is a large background (and dominant systematic) for ttH(H→bb). Only
 modelled to NLO by generators. Let's measure it.
- Link to note, 36.1 fb⁻¹ @ 13 TeV, dilepton/l+jets channels
- Data-driven template fit to derive correction factors for flavour composition for tt+X
- Result: differential cross sections as functions of kinematic variables of b-jet pairs
 - Min $\Delta R(b,b)$: expected to be from gluon splitting
 - Highest p_T: dominated by top pair production

tt+bb — inclusive fiducial cross section results

•

Generally exceed NLO predictions, but compatible within uncertainties

PDF fits

- Goal: fit ATLAS W, Z/γ* cross sections (7 TeV), tt pT+mt+ytt distributions (8 TeV), HERA e*p DIS data to produce new PDF set <u>ATLASepWZtop18</u>
- Use full correlation information to perform simultaneous fit — increases impact of tt data
- After including tt data gluon PDF is slightly harder, lower uncertainty at high x

PDF fits

- Goal: fit ATLAS W, Z/γ^* cross sections • (7 TeV) \neq $\hat{p}_{+} + m_{tt} + y_{tt} = 1$ $\hat{p}_{tt} + \hat{p}_{tt} = 1$ $\hat{p}_{tt} = 1$ $\hat{p$ new PDF set <u>ATLASepWZtop18</u>
- Use full correlation information to perform simultaneous fit — increases impact of tt data
- After incluging tt data gluon Pl slightly harder, lower uncertaint high x -0.2 **10⁻²** 10^{-3} **10**⁻¹

Adam Bozson <<u>adam.bozson@cern.ch</u>>

0

Single top — motivation

- Direct determination of *tWb* vertex ●
- Measurement of CKM matrix element magnitude $|V_{tb}|$ •
- tWb anomalous couplings sensitive to BSM physics
- Single top interferes with tt at higher orders of α_s •

Adam Bozson <<u>adam.bozson@cern.ch</u>>

tW - strategy

- First tW differential cross section, 36.1 fb⁻¹ @ 13 TeV, Link to paper
- Dileptonic final state containing 1 b-tagged jet and 2 • neutrinos
- Signal region: 2 leptons, exactly 1 b-jet •
 - Not considering >1 b-jets supresses tt background and • tt/tW interference
 - BDT separates tW signal from large tt background ٠
 - Events vetoed if dilepton invariant mass is inside a Z • window
- Unfolded to fiducial phase space

Adam Bozson <<u>adam.bozson@cern.ch</u>>

tW - results

Adam Bozson <<u>adam.bozson@cern.ch</u>>

tZ - strategy

- 36.1 fb⁻¹ @ 13 TeV, Link to paper
 - Inclusive cross section measurement
- tZq final state with 3 leptons + 2 jets (1 b-tag)
- Backgrounds: WZ/ZZ, tt, Z+jets
- Neural network discriminant

Variables	used	as	input	to	the	neural	network,	ordered	by	their	sepa
				•••					~ J		

Variable	Definition
η(j)	Absolute value of untagged jet η
$p_{\mathrm{T}}(\mathbf{j})$	Untagged jet <i>p</i> _T
m_t	Reconstructed top-quark mass
$p_{\mathrm{T}}(\ell^W)$	$p_{\rm T}$ of the lepton from the W-boson decay
$\Delta R(\mathbf{j}, \mathbf{Z})$	ΔR between the untagged jet and the Z boson
$m_{\rm T}(\ell, E_{\rm T}^{\rm miss})$	Transverse mass of W boson
$p_{\mathrm{T}}(t)$	Reconstructed top-quark $p_{\rm T}$
$p_{\mathrm{T}}(b)$	Tagged jet $p_{\rm T}$
$p_{\mathrm{T}}(Z)$	$p_{\rm T}$ of the reconstructed Z boson
$ \eta(\ell^W) $	Absolute value of η of the lepton coming from t
	decay

tZ – results

- Binned Poisson likelihood maximised to fit signal strength $\boldsymbol{\mu}$
- μ = 0.75 ± 0.21 (stat.) ± 0.17 (syst.) ± 0.05 (th.)
- Profile likelihood ratio defines test statistic q_{μ}
- $p_0 = 1.3 \times 10^{-5}$
- Observed (expected) significance: 4.2σ
 (5.4σ)

HEPMAD 18

21

Top quark properties

- Colour flow: link •
- Charge asymmetry: <u>link</u> •
 - Combination of ATLAS and CMS reults from 7 and 8 TeV •
 - Result consistent with SM (no charge asymmetry) •
- -2∆ln(L) ATLAS Width: <u>link</u> • 0.8 20.2 fb⁻¹ @ 8 TeV 0.6 0.4

Adam Bozson < adam.bozson@cern.ch > $\Gamma Obs. = 1.76 \pm 0.33$ (stat.) ± 0.79 (svst.) GeV

• Template fit m_{lb} and $\Delta R_{min}(j_b, j_l)$

HEPMAD 18

1.4

Spin correlation — strategy

- pairs
- accessible in charged leptons
- •
- •
- shell tops and W bosons to solve for neutrino 4-momenta

The SM predicts top quark and anti-quark spins to be correlated in tt

Spin information is carried by the top quark decay products, particularly

Measure unfolded $|\Delta \phi|$ differential cross section in dileptonic channel

Sensitive to BSM physics: SUSY stops, used for EFT fits (chromo-EM)

tt system reconstructed using neutrino weighting method: assumes on-

Spin correlation — results

• Link to note

 Maximum-likelihood fit to determine f_{SM}

$$n_i = f_{\text{SM}} n_{\text{spin}} + (1 - f_{\text{SM}}) n_{\text{no spin}}$$

$m_{t\bar{t}} < 450 \text{ GeV}$ $1.11 \pm 0.04 \pm 0.13$ $0.85 (0.84)$ $450 < m_{t\bar{t}} < 550 \text{ GeV}$ $1.17 \pm 0.09 \pm 0.14$ $1.00 (0.91)$	Region	$f_{ m SM}$	Significance (incl. theory uncert
$450 < m_{t\bar{t}} < 550 \text{ GeV} \qquad 1.17 \pm 0.09 \pm 0.14 \qquad 1.00 \ (0.91)$	$m_{t\bar{t}} < 450 \text{ GeV}$	$1.11 \pm 0.04 \pm 0.13$	0.85 (0.84)
	$450 < m_{t\bar{t}} < 550 \text{ GeV}$	$1.17 \pm 0.09 \pm 0.14$	1.00 (0.91)
$550 < m_{t\bar{t}} < 800 \text{ GeV}$ $1.60 \pm 0.24 \pm 0.35$ $1.43 (1.37)$	$550 < m_{t\bar{t}} < 800 {\rm GeV}$	$1.60 \pm 0.24 \pm 0.35$	1.43 (1.37)
$m_{t\bar{t}} > 800 \text{ GeV}$ $2.2 \pm 1.8 \pm 2.3$ $0.41 (0.40)$	$m_{t\bar{t}} > 800 \text{ GeV}$	$2.2 \pm 1.8 \pm 2.3$	0.41 (0.40)
inclusive $1.250 \pm 0.026 \pm 0.063$ 3.70 (3.20)	inclusive	$1.250 \pm 0.026 \pm 0.063$	3.70 (3.20)

No MC can describe the data

Summary

- The top quark is interesting and unique
- Provides a laboratory for testing theory predictions • and performing high-precision measurements
- Window into BSM physics, possible future directions •
- A significant part of ATLAS research programme •
- Lots of recent activity with interesting results •
- Modelling will improve, more data brings more • results

Backup

lop mass

- likelihood fit in BDT and select well-reconstructed events Result: 172.08 ± 0.39 (stat) ± 0.82 (syst) GeV

Adam Bozson <adam.bozson@cern.ch>

8 TeV lepton+jets: large uncertainties in JES reduced by simultaneously fitting (b)JSF, kinematic

ttW and ttZ cross sections

- of SM, top quark coupling to weak neutral current (ttZ)
- Link to paper, 3.2 fb⁻¹ @ 13 TeV (first at this energy) •
- Analyses in 2x, 3x, 4x lepton channels •
- Analysis strategy: define many regions by N_{jets} • and N_{b-tags} and label them...
 - Validation: check fake estimation (not in fit)
 - Control: diboson normalisations (in fit) \bullet
 - Signal: either ttW, ttZ
- Fit control and signal regions simultaneously •

• Motivation: sensitive to BSM physics (vector-like quarks, extra Higgs), precision test

Adam Bozson <<u>adam.bozson@cern.ch</u>>

ttW and ttZ cross sections — fit results

Observed (expected) significance over bkg-only hypotheses: ttW: 2.2σ (1.0σ), ttZ: 3.9σ (3.4σ)

- WZ, ZZ normalisation corrections compatible with unity ($WZ=1.11\pm0.30$, $ZZ=0.94\pm0.17$)
- At 8 TeV with 20.3 fb₋₁, $5.0\sigma(4.2\sigma)$ observed for ttW(ttZ)
- This 13 TeV analysis is statistically limited!

Uncertainty	$\sigma_{t\bar{t}Z}(\%)$	$\sigma_{t\bar{t}W}(\%)$
Luminosity	2.6	3.1
Reconstructed objects	8.3	9.3
Backgrounds from simulation	5.3	3.1
Fake leptons and charge misID	3.0	19
Signal modelling	2.3	4.2
Total systematic	11	22
Statistical	31	48
Total	32	53

tt/t interference

- ullet

- Mass of Wb pairs used:

tW – more results

Adam Bozson <<u>adam.bozson@cern.ch</u>>

tW – more results

Adam Bozson <<u>adam.bozson@cern.ch</u>>

tZ — Neural network inputs

Table 2 Variables used as	s input to the neural
Variable	Definition
$ \eta(\mathbf{j}) $	Absolute value of
$p_{\mathrm{T}}(\mathbf{j})$	Untagged jet $p_{\rm T}$
m_t	Reconstructed top
$p_{\mathrm{T}}(\ell^W)$	$p_{\rm T}$ of the lepton :
$\Delta R(\mathbf{j}, \mathbf{Z})$	ΔR between the
$m_{\rm T}(\ell, E_{\rm T}^{\rm miss})$	Transverse mass
$p_{\rm T}(t)$	Reconstructed top
$p_{\mathrm{T}}(b)$	Tagged jet $p_{\rm T}$
$p_{\rm T}(Z)$	$p_{\rm T}$ of the reconst
$ \eta(\ell^W) $	Absolute value of
	decay

network, ordered by their separation power.

f untagged jet η

p-quark mass from the W-boson decay untagged jet and the Z boson of W boson p-quark p_T

tructed Z boson f η of the lepton coming from the W-boson