Nature of the $X(5568){\rm :}$ a critical Laplace sum rule analysis at N2LO

A. Ch. RABEMANANJARA

Institute of High Energy Physics of Madagascar

7 septembre 2018

In collaboration with R.M. Albuquerque - S. Narison - D. Rabetiarivony

 $\bullet\,$ Stimulated by the recent observation of the D0 collaboration.

- Stimulated by the recent observation of the D0 collaboration.
- If confirmed, this is the first observation of hadron with four-different flavours.

- $\bullet\,$ Stimulated by the recent observation of the D0 collaboration.
- If confirmed, this is the first observation of hadron with four-different flavours.
- We use QCD spectral sum rule to interpret the X(5568) either as a BK molecule or as a four-quark $(\bar{bu})(ds)$.

- Stimulated by the recent observation of the D0 collaboration.
- If confirmed, this is the first observation of hadron with four-different flavours.
- We use QCD spectral sum rule to interpret the X(5568) either as a BK molecule or as a four-quark $(\bar{bu})(ds)$.
- We will analyse the masses and couplings of some 0⁺ and 1⁺ molecules and four-quark states by including the N2LO contributions.

- Stimulated by the recent observation of the D0 collaboration.
- If confirmed, this is the first observation of hadron with four-different flavours.
- We use QCD spectral sum rule to interpret the X(5568) either as a BK molecule or as a four-quark $(\bar{bu})(ds)$.
- We will analyse the masses and couplings of some $0^+ {\rm and} \ 1^+$ molecules and four-quark states by including the N2LO contributions.
- We will extract our optimal prediction using Laplace sum rule with the standard stability criteria versus τ (sum rule variable), t_c (continuum threshold) and μ (substraction constant).

- Stimulated by the recent observation of the D0 collaboration.
- If confirmed, this is the first observation of hadron with four-different flavours.
- We use QCD spectral sum rule to interpret the X(5568) either as a BK molecule or as a four-quark $(\bar{bu})(ds)$.
- We will analyse the masses and couplings of some $0^+ {\rm and} \ 1^+$ molecules and four-quark states by including the N2LO contributions.
- We will extract our optimal prediction using Laplace sum rule with the standard stability criteria versus τ (sum rule variable), t_c (continuum threshold) and μ (substraction constant).
- We will also extend our results to the charm channel.

Exotic hadron

Spectral function and QCD sum rule

- Exotic hadron
- Spectral function and QCD sum rule
- Mass and coupling derivation technics

- Exotic hadron
- Spectral function and QCD sum rule
- Mass and coupling derivation technics
- Convolution and N2LO spectral function

- Exotic hadron
- Spectral function and QCD sum rule
- Mass and coupling derivation technics
- Convolution and N2LO spectral function
- Sesults an Summary

Exotic mesons

- Hadrons = Mesons (1 quark + 1 anti-quark $q_1\bar{q}_2$) or Baryons (3 quarks $q_1q_2q_3$)
- Colour charge R, G and B : Quantum Chromodynamics (QCD)

Exotic mesons

- Hadrons = Mesons (1 quark + 1 anti-quark $q_1\bar{q}_2$) or Baryons (3 quarks $q_1q_2q_3$)
- Colour charge R, G and B : Quantum Chromodynamics (QCD)
- Observables particles must be color singlet

Exotic mesons

- Hadrons = Mesons (1 quark + 1 anti-quark $q_1\bar{q}_2$) or Baryons (3 quarks $q_1q_2q_3$)
- Colour charge R, G and B : Quantum Chromodynamics (QCD)
- Observables particles must be color singlet
- QCD allow other configurations

Spectral Functions

 $\textbf{0} \ \ \mathsf{High} \ \ \mathsf{Energy} \to \mathsf{Perturbative} \ \mathsf{QCD}$

Spectral Functions

- $\textcircled{O} High Energy \rightarrow Perturbative QCD$

Spectral Functions

- $\textbf{0} \quad \mathsf{High} \ \mathsf{Energy} \rightarrow \mathsf{Perturbative} \ \mathsf{QCD}$
- ② Low Energy (Hadronic level) \rightarrow Non-Perturbative QCD : QCD spectral Sum Rules
- Two point function :

$$\Pi_{mol}^{\mu\nu}(q) = i \int d^4x \ e^{iq.x} \langle 0|TJ^{\mu}(x)J^{\nu\dagger}(0)|0\rangle$$
$$= -(q^2 g^{\mu\nu} - q^{\mu}q^{\nu})\Pi_{mol}^{(1)}(q^2) + q^{\mu}q^{\nu}\Pi_{mol}^{(0)}(q^2)$$

The 2-point function can be evaluate in two ways :

- QCD side : OPE (Operator Product Expansion)
- Phenomenological side $\rightarrow f_H$: the decay constant and it parametrize the coupling of the hadron to the current.

QCD sum rule

Wilson expansion :

$$\Pi^{\mu\nu}(q) = i \int d^4x \ e^{iq.x} \langle 0|J(x)J^{\dagger}(0)|0\rangle = \sum_n C_n(q^2) \langle 0|: \mathcal{O}_n(0): |0\rangle$$

Wick theorem : Normal ordered product + All contractions

 $\begin{aligned} :\mathcal{O}_{3} := & :\bar{q}(0)q(0) :\Rightarrow \langle \bar{q}q \rangle \\ :\mathcal{O}_{4} := & :g_{s}^{2}G_{\alpha\beta}^{N}(0)G_{\alpha\beta}^{N}(0) :\Rightarrow \langle g_{s}^{2}G^{2} \rangle \\ :\mathcal{O}_{5} := & :\bar{q}(0) :g_{s}^{2}\sigma^{\alpha\beta}G_{\alpha\beta}^{N}(0)q(0) :\Rightarrow \langle \bar{q}Gq \rangle \\ :\mathcal{O}_{6}^{q} := & :\bar{q}(0)q(0)\bar{q}(0)q(0) :\Rightarrow \langle \bar{q}q \rangle^{2} \\ :\mathcal{O}_{6}^{G} := & :f_{NMK}g_{s}^{3})G_{\alpha\beta}^{N}(0)G_{\beta\gamma}^{N}(0)G_{\gamma\alpha}^{N}(0) :\Rightarrow \langle g_{s}^{3}G^{3} \rangle \\ \rho^{OPE}(t) = & \rho_{0}(t) + \rho_{3}(t)\langle \bar{q}q \rangle + \rho_{4}(t)\langle g^{2}G^{2} \rangle + \rho_{5}(t)\langle \bar{q}Gq \rangle + ... \end{aligned}$

Dispersion relation :

$$\Pi^{OPE}(q) = \int_{t_0}^{+\infty} dt \frac{\rho^{OPE}(t)}{t - q^2}$$

QCD sum rule

- Use the definition of time ordered product
- Dispersion relation : $\Pi(q)\equiv\int {\rm dt} \frac{\rho(t)}{t-q^2-{\rm i}\epsilon}$ where

$$\rho(t) = \sum_{H_q} |\langle 0|J(0)|H_q \rangle|^2 \delta(t - E_H^2)$$

QCD sum rule

- Use the definition of time ordered product
- Dispersion relation : $\Pi(q)\equiv\int {\rm dt} \frac{\rho(t)}{t-q^2-{\rm i}\epsilon}$ where

$$\rho(t) = \sum_{H_q} |\langle 0|J(0)|H_q\rangle|^2 \delta(t - E_H^2)$$

• $\sum H_q \equiv H_0 + \sum H'$ where H_0 represent the ground state and H' the exited ones.

The dispersion relation become :

$$\Pi^{PHEN}(q) = \frac{\lambda^2}{M_H^2 - q^2} + \int_{t_c}^{+\infty} \mathrm{dt} \frac{\rho^{OPE}(t)}{t - q^2}$$

Quark-hadron duality principle :

 $\Pi_{QCD}(q) = \Pi_{PHEN}(q)$

Quark-hadron duality principle :

```
\Pi_{QCD}(q) = \Pi_{PHEN}(q)
```

Quarks and Gluons | Mesons and Baryons

Quark-hadron duality principle :

```
\Pi_{QCD}(q) = \Pi_{PHEN}(q)
```

Quarks and Gluons Mesons and Baryons OPE Phenomenology

Quark-hadron duality principle :

```
\Pi_{QCD}(q) = \Pi_{PHEN}(q)
```

Quarks and Gluons N OPE Condensates H

Mesons and Baryons Phenomenology Hadronic parameters

Quark-hadron duality principle :

```
\Pi_{QCD}(q) = \Pi_{PHEN}(q)
```

Quarks and Gluons
OPEMesons and Baryons
PhenomenologyCondensatesHadronic parametersDispersion relationDispersion relation

Quark-hadron duality principle :

```
\Pi_{QCD}(q) = \Pi_{PHEN}(q)
```

Quarks and Gluons	Mesons and Baryons
OPE	Phenomenology
Condensates	Hadronic parameters
Dispersion relation	Dispersion relation

QCD Sum Rules : $\Pi_{QCD}(q) = \Pi_{PHEN}(q)$ Excited states \implies Inverse Laplace Sum Rules Quark-hadron duality principle :

 $\Pi_{QCD}(q) = \Pi_{PHEN}(q)$

Quarks and Gluons	Mesons and Baryons
OPE	Phenomenology
Condensates	Hadronic parameters
Dispersion relation	Dispersion relation

 $\begin{array}{l} \mathsf{QCD} \ \mathsf{Sum} \ \mathsf{Rules} : \Pi_{QCD}(q) = \Pi_{PHEN}(q) \\ \mathsf{Excited} \ \mathsf{states} \Longrightarrow \ \mathsf{Inverse} \ \mathsf{Laplace} \ \mathsf{Sum} \ \mathsf{Rules} \Longrightarrow \\ \mathsf{masses}, \\ \mathsf{couplings} \end{array}$

Currents and Spectral Functions

Molecule :

- BK 0⁺ $(\bar{b}i\gamma^5 u)(\bar{d}i\gamma^5 s)$ • $B_s\pi$ 0⁺ $(\bar{b}i\gamma^5 s)(\bar{d}i\gamma^5 u)$ • B^*K 1⁺ $(\bar{b}\gamma^{\mu}u)(\bar{d}i\gamma^5 s)$
- $B_s^*\pi$ 1⁺ $(\bar{b}\gamma^\mu s)(\bar{d}i\gamma^5 u)$

Four-quark :

• $1^{-} (s^{T}C\gamma^{5}u)(\bar{b}\gamma^{\mu}\gamma^{5}C\bar{d}^{T}) + k(s^{T}Cu)(\bar{b}\gamma^{\mu}C\bar{d}^{T})$ • $1^{+} (s^{T}C\gamma^{5}u)(\bar{b}\gamma^{\mu}C\bar{d}^{T}) + k(s^{T}Cu)(\bar{b}\gamma^{\mu}\gamma^{5}C\bar{d}^{T})$

$$\begin{split} \text{Mass}: \ M_{H}^{2} &= \frac{\int_{4m_{Q}^{2}}^{t_{c}} dt \ t \ e^{-t\tau} \frac{1}{\pi} \text{Im} \Pi^{OPE}(t)}{\int_{4m_{Q}^{2}}^{t_{c}} dt \ e^{-t\tau} \frac{1}{\pi} \text{Im} \Pi^{OPE}(t)} \\ \text{Coupling}: \ f_{H}^{2} &= \frac{\int_{4m_{Q}^{2}}^{t_{c}} dt \ e^{-t\tau} \frac{1}{\pi} \text{Im} \Pi^{OPE}(t)}{e^{-\tau M_{H}^{2}} M_{H}^{8}} \end{split}$$

$$\begin{split} \text{Mass}: \ M_{H}^{2} &= \frac{\int_{4m_{Q}^{2}}^{t_{c}} dt \ t \ e^{-t\tau} \frac{1}{\pi} \text{Im} \Pi^{OPE}(t)}{\int_{4m_{Q}^{2}}^{t_{c}} dt \ e^{-t\tau} \frac{1}{\pi} \text{Im} \Pi^{OPE}(t)} \\ \text{Coupling}: \ f_{H}^{2} &= \frac{\int_{4m_{Q}^{2}}^{t_{c}} dt \ e^{-t\tau} \frac{1}{\pi} \text{Im} \Pi^{OPE}(t)}{e^{-\tau M_{H}^{2}} M_{H}^{8}} \end{split}$$

• " τ " is an arbitrary parameter, then the mass have to be independent of him.We must get a stability w.r.t " τ "

$$\begin{split} \text{Mass}: \ M_{H}^{2} &= \frac{\int_{4m_{Q}^{2}}^{t_{c}} dt \ t \ e^{-t\tau} \frac{1}{\pi} \text{Im} \Pi^{OPE}(t)}{\int_{4m_{Q}^{2}}^{t_{c}} dt \ e^{-t\tau} \frac{1}{\pi} \text{Im} \Pi^{OPE}(t)} \\ \text{Coupling}: \ f_{H}^{2} &= \frac{\int_{4m_{Q}^{2}}^{t_{c}} dt \ e^{-t\tau} \frac{1}{\pi} \text{Im} \Pi^{OPE}(t)}{e^{-\tau M_{H}^{2}} M_{H}^{8}} \end{split}$$

- " τ " is an arbitrary parameter, then the mass have to be independent of him.We must get a stability w.r.t " τ "
- We find the begining of the stability for different values of t_c

$$\begin{split} \text{Mass}: \ M_{H}^{2} &= \frac{\int_{4m_{Q}^{2}}^{t_{c}} dt \ t \ e^{-t\tau} \frac{1}{\pi} \text{Im} \Pi^{OPE}(t)}{\int_{4m_{Q}^{2}}^{t_{c}} dt \ e^{-t\tau} \frac{1}{\pi} \text{Im} \Pi^{OPE}(t)} \\ \text{Coupling}: \ f_{H}^{2} &= \frac{\int_{4m_{Q}^{2}}^{t_{c}} dt \ e^{-t\tau} \frac{1}{\pi} \text{Im} \Pi^{OPE}(t)}{e^{-\tau M_{H}^{2}} M_{H}^{8}} \end{split}$$

- "τ" is an arbitrary parameter, then the mass have to be independent of him.We must get a stability w.r.t "τ"
- We find the begining of the stability for different values of t_c
- The value of the mass was assumed to be near the minimum or near the inflexion point

$$\begin{split} \text{Mass}: \ M_{H}^{2} &= \frac{\int_{4m_{Q}^{2}}^{t_{c}} dt \ t \ e^{-t\tau} \frac{1}{\pi} \text{Im} \Pi^{OPE}(t)}{\int_{4m_{Q}^{2}}^{t_{c}} dt \ e^{-t\tau} \frac{1}{\pi} \text{Im} \Pi^{OPE}(t)} \\ \text{Coupling}: \ f_{H}^{2} &= \frac{\int_{4m_{Q}^{2}}^{t_{c}} dt \ e^{-t\tau} \frac{1}{\pi} \text{Im} \Pi^{OPE}(t)}{e^{-\tau M_{H}^{2}} M_{H}^{8}} \end{split}$$

- "τ" is an arbitrary parameter, then the mass have to be independent of him.We must get a stability w.r.t "τ"
- We find the begining of the stability for different values of t_c
- The value of the mass was assumed to be near the minimum or near the inflexion point
- We also compute the mass and coupling at different scale " μ "

$$\begin{split} \text{Mass}: \ M_{H}^{2} &= \frac{\int_{4m_{Q}^{2}}^{t_{c}} dt \ t \ e^{-t\tau} \frac{1}{\pi} \text{Im} \Pi^{OPE}(t)}{\int_{4m_{Q}^{2}}^{t_{c}} dt \ e^{-t\tau} \frac{1}{\pi} \text{Im} \Pi^{OPE}(t)} \\ \text{Coupling}: \ f_{H}^{2} &= \frac{\int_{4m_{Q}^{2}}^{t_{c}} dt \ e^{-t\tau} \frac{1}{\pi} \text{Im} \Pi^{OPE}(t)}{e^{-\tau M_{H}^{2}} M_{H}^{8}} \end{split}$$

- " τ " is an arbitrary parameter, then the mass have to be independent of him.We must get a stability w.r.t " τ "
- We find the begining of the stability for different values of t_c
- The value of the mass was assumed to be near the minimum or near the inflexion point
- We also compute the mass and coupling at different scale " μ "
- Noting that the bilinear (pseudo)scalar current acquires an anomalous dimension due to its normalization, thus the decay constants run to order α^2

Convolution

The molecular spectral function can be considered as a convolution of two 2-point functions $^{\rm 1}$

$$\begin{split} \frac{1}{\pi} \mathrm{Im}\Pi_{mol}^{(0,1)}(t) &= \qquad \theta(t - 4M_Q^2) \left(\frac{1}{4\pi}\right)^2 t^2 \int_{M_Q^2}^{(\sqrt{t} - M_Q)^2} \int_{M_Q^2}^{(\sqrt{t} - \sqrt{t_1})^2} dt_2 \times \dots \\ \\ \text{For spin 0: } \dots &= \qquad \lambda^{1/2} \left[\left(\frac{t_1}{t} + \frac{t_2}{t} - 1\right)^2 \right] \frac{1}{\pi} \mathrm{Im}\Pi^{(0)}(t_1) \frac{1}{\pi} \mathrm{Im}\Pi^{(0)}(t_2) \\ \\ \dots &= \qquad \lambda^{3/2} \frac{1}{\pi} \mathrm{Im}\Pi^{(1)}(t_1) \frac{1}{\pi} \mathrm{Im}\Pi^{(1)}(t_2) \\ \\ \text{For spin 1: } \dots &= \qquad \lambda^{1/2} \left[\left(\frac{t_1}{t} + \frac{t_2}{t} - 1\right)^2 + \frac{8t_1t_2}{t^2} \right] \frac{1}{\pi} \mathrm{Im}\Pi^{(0)}(t_1) \frac{1}{\pi} \mathrm{Im}\Pi^{(1)}(t_2) \end{split}$$

 $\frac{\rho_{OPE} = \rho_{pert} \left(1 + \frac{NLO + N2LO}{LO}\right) + \rho_{\langle q\bar{q} \rangle} + \rho_{\langle g^2 G^2 \rangle} + \rho_{\langle qGq \rangle} + \rho_{\langle qq \rangle^2} + \rho_{\langle g^3 G^3 \rangle} }{1. \text{ A. Pich and E. de Rafael/S. Narison and A. Pivovarov.} }$

Result for B^*K molecule at LO

Result for B^*K molecule at LO

The effect of the definitions (running and pole) of the heavy quark mass used should be added as errors in the LO analysis

B^*K results at NLO and N2LO

	t_c (GeV ²)	au (GeV ⁻²)	Mass (GeV)	Coupling (keV)
NLO	\geq 34 - 48	0.56 - 0.60	5.200 - 5.201	7.95 - 8.07
N2LO	34 - 48	0.58 - 0.62	5.185 - 5.187	7.95 - 8.09

B^*K results (μ), PT-series

B^*K results (μ), PT-series

Good convergence of PT-series

Final results

Nature	J^P	Mass [MeV]	\hat{f}_X [keV]	$f_X(4.5)$ [keV]
b-quark channel				<u> </u>
Molecule				
B^*K	1^{+}	5186 ± 13	4.48 ± 1.45	8.02 ± 2.60
BK	0^{+}	5195 ± 15	2.57 ± 0.75	8.26 ± 2.40
$B_s^*\pi$	1^{+}	5200 ± 18	5.61 ± 0.87	10.23 ± 1.59
$B_s\pi$	0^{+}	5199 ± 24	3.15 ± 0.70	10.5 ± 2.30
Four-quark $(su)(\overline{bd})$				
A_b	1^{+}	5186 ± 16	5.05 ± 1.32	9.04 ± 2.37
S_b	0^{+}	5196 ± 17	2.98 ± 0.70	9.99 ± 2.36
<i>c</i> -quark channel				
Molecule				
D^*K	1^{+}	2395 ± 48	155 ± 36	226 ± 52
DK	0^{+}	2402 ± 42	139 ± 26	254 ± 48
$D_s^*\pi$	1^{+}	2395 ± 48	215 ± 35	308 ± 49
$D_s\pi$	0^{+}	2404 ± 37	160 ± 22	331 ± 46
Four-quark $(su)(\overline{cd})$				
A_c	1^{+}	2400 ± 47	192 ± 41	260 ± 55
S_c	0^+	2395 ± 68	122 ± 26	221 ± 47

Summary

• We can see a good convergence after including higher correction, the existence of this convergence confirm the veracity of our results.

Summary

- We can see a good convergence after including higher correction, the existence of this convergence confirm the veracity of our results.
- Our analysis including high order PT corrections has given a more meaning on the input value and the definition of heavy quark mass. The ill-defined heavy quark mass definition used at LO is not enough to have better results.

Summary

- We can see a good convergence after including higher correction, the existence of this convergence confirm the veracity of our results.
- Our analysis including high order PT corrections has given a more meaning on the input value and the definition of heavy quark mass. The ill-defined heavy quark mass definition used at LO is not enough to have better results.
- We do not include higher contributions (≥ 7) in our estimate but only consider them as a source of the errors.

- We can see a good convergence after including higher correction, the existence of this convergence confirm the veracity of our results.
- Our analysis including high order PT corrections has given a more meaning on the input value and the definition of heavy quark mass. The ill-defined heavy quark mass definition used at LO is not enough to have better results.
- We do not include higher contributions (≥ 7) in our estimate but only consider them as a source of the errors.
- Our previous analysis within stability criteria with respect to τ , t_c and μ have done some successful predictions in different hadronic channels. However, we did not predict a mass of a pure exotic $BK, B^*K, B_s\pi$ molecule or four-quark state around the D0's X(5568) wich is not confirmed by LHCb.

- We can see a good convergence after including higher correction, the existence of this convergence confirm the veracity of our results.
- Our analysis including high order PT corrections has given a more meaning on the input value and the definition of heavy quark mass. The ill-defined heavy quark mass definition used at LO is not enough to have better results.
- We do not include higher contributions (≥ 7) in our estimate but only consider them as a source of the errors.
- Our previous analysis within stability criteria with respect to τ , t_c and μ have done some successful predictions in different hadronic channels. However, we did not predict a mass of a pure exotic $BK, B^*K, B_s\pi$ molecule or four-quark state around the D0's X(5568) wich is not confirmed by LHCb.
- From our analysis, one may suggest to scan the regions (2327 2444) MeV and (5173 5226) MeV for detecting these unmixed exotic hadrons.

Thank you

International Journal of Modern Physics AVol. 31, No. 17, 1650093 (2016) Research PapersNo Access Nature of the X(5568) — A critical Laplace sum rule analysis at N2LO R. Albuquerque, S. Narison, A. Rabemananjara and D. Rabetiarivony https://doi.org/10.1142/S0217751X16500937