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We use duality to relate resonances in missing mass M to the large-
mass diffraction dissociation of protons. In deep inelastic lepton-hadron
scattering (DIS), hadronic resonances are related by duality in Q2 to the
low-x, smooth behaviour of the DIS structure functions.
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1 Finite mass sum rule (FMSR) in proton diffrac-

tion dissociation

Discovery [1] of finite energy sum rules (FESR) and duality between low-energy res-
onances and asymptotic Regge behaviour stimulated applications of duality in other
areas of high-energy physics. Among these are finite-mass sum rules (FMSR) and
parton-hadron duality in deep inelastic scattering (DIS). FMSR is an efficient tool in
relating the contribution of resonances in the missing mass, M produced in proton
diffraction dissociation to the smooth large-M Regge behaviour of the cross sections
assumed in the triple-pomeron limit, based on the general optical theorem.

In Refs. [2] a method to include resonances in the missing mass M , based on a
”reggeized Breit-Wigner” model following from duality was elaborated. Resonances
in M are generated by a direct-channel (pole) decomposition of the dual model. The
single diffraction (SD) dissociation cross section in our model [2] is :

d2σSD
dtdM2

i

= FP
2(t)F (xB, t)

σPpT (t,M2
i )

2mp

(s/M2
i )2(α(t)−1) ln(s/M2

i ), i = 1, 2, (1)

σPpT (M2
X , t) = ImA(M2

X , t) =
AN∗∑

n n− αN∗(M2
X)

+Bg(t,M2) = (2)

= Anorm

∑
n=0,1,...

[f(t)]2(n+1)Imα(M2
x)

(2n+ 0.5−Reα(M2
X))2 + (Imα(M2

X))2
+Bg(t,M2),

where α(t) is the pomeron trajectory, α(M2) is the Regge trajectory in the direct γ−p
channel, Bg is the background and Fp is the elastic pPp vertex. We use non-linear
complex trajectories, typically

α(x) = α0 + α1x+ α2(
√
x0 −

√
x0 − x), x = s, t,M2, (3)

where x0 is the lightest threshold in the given channel.
The model reproduces the observable sequence of resonances in the missing mass

Fig. 1a, see also [5].
The first moment FMSR

|t|dσ
dt

+
∫ ν0

0
ν
d2σ

dtdν
=
∫ ν0

0
ν
( d2σ
dtdν

)
Regge

dν

states that the extrapolation of high ν behaviour of the function ν(dσ/dtdν) into the
low ν region , where ν = M2

x −M2
p − t is the crossing-symmetric variable represents

the average behaviour of the resonances and vice versa. FMSR were tested against
single diffraction dissociation, see Fig.1b.
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Duality sum rules work also in deep inelastic scattering (DIS), relating resonances,
appearing at large Q2 to smooth asymptotic behaviour at low x (parton-hadron du-
ality). Here again, resonances can be described by the above reggeized Breit-Wigner
model, see [2].
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Figure 1: (a) Double differential cross section of SD at the LHC for different values
of t calculated in [6]. (b) A test of the FMSR [4].

2 Dual-Regge Structure Function and parton-hadron

(Bloom-Gilman) duality

The kinematics of inclusive electron-nucleon scattering, applicable to both high ener-
gies, typical of HERA, and low energies as at JLab, is shown in Fig. 2.
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Figure 2: Kinematic of deep inelastic scattering.
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The basic idea in our approach is the use the off-mass-shell continuation of the dual
amplitude with non-linear complex Regge trajectories. We adopt the two-component
picture of strong interactions, according to which direct-channel resonances are dual
to cross-channel Regge exchanges and the smooth background in the s−channel is
dual to the pomeron exchange in the t−channel.

The cross section is related to the structure function by

F2(x,Q
2) =

Q2(1− x)

4πα(1 + 4m2x2/Q2)
σγ

∗p
t , (4)

, and use the norm where
σγ

∗p
t (s) = Im A(s,Q2) (5)

The center of mass energy of the γp system, the negative squared photon virtuality
Q2 and the Bjorken variable x are related by

s = W 2 = Q2(1− x)/x+m2 . (6)

In the Regge-dual approach with vector meson dominance implied, Compton scat-
tering can be viewed as an off-mass shell continuation of a hadronic reaction, domi-
nated in the resonance region by non-strange (N and ∆) baryonic resonances. The
scattering amplitude can be written as a pole decomposition of the dual amplitude
and factorizes as a product of two vertices (form factors) times the propagator:

[
A(s,Q2)

]
t=0

= N

{∑
r,n

f 2(n−nmin
r +1)

r (Q2)

n− αr(s)
+ [A(s,Q2)]BGt=0

}
, (7)

where N is an overall normalization coefficient, r runs over all trajectories allowed
by quantum number conservation (in our case r = N∗1 , N

∗
2 , ∆) while n runs from

nminr (spin of the first resonance) to nmaxr (spin of the last resonance - for more
details see next section), and [A(s,Q2)]BGt=0 is the contribution from the background.
The functions fr(Q

2) and αr(s) are respectively form factors and Regge trajectory
corresponding to the rth−term.

As seen from Fig. 3a, the model fits almost perfectly the complicated resonance
pattern, however its rise towards small is x too steep (see also [5]), which may be
corrected by the use of asymptotically flatter Regge trajectories, namely: α(s) =
α0 −

∑
i ln(1 + βi

√
ti − t instead of (3).

Below we check the validity of parton-hadron duality for our Regge-dual model
by calculating the duality relation

I(Q2) =
Ires.

Iscale
, (8)

where
Ires.(Q

2) =
∫ smax

smin.

dsF res.
2 ,
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Iscale(Q
2) =

∫ smax.

smin.

dsF scale
2

using the model (7).
We fix the lower integration limit smin = s0, varying the upper limit smax equal

5 GeV 2 and 10 GeV2. These limits imply ”global duality”, i.e. a relation averaged
over some interval in s (contrary to the so-called ”local duality”, assumed to hold at
each resonance position). For fixed Q2 the integration variable can be either s (as
in our case), x or any of its modifications (x′, ξ, ...) with properly scaled integration
limits. The difference may be noticeable at small values of Q2 due to the target mass
corrections (for details see e.g. [3]). These effects are typically non-perturbative and,
apart from the choice of the variables, depend on detail of the model.

The function FRes
2 is our SF The results of the calculations for different values of

smax are shown in Fig. 3b.
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Figure 3: (a) Model predictions [2] for the structure function F2(x) at Q2 = 0.225÷
0.925GeV2. The data are from [3]. (b) Global parton-hadron duality test for different
values of smax.
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