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Inclusive production of vector quarkonia at the LHC
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We discuss prompt production of J/1) mesons in proton-proton colli-
sions at the LHC within NRQCD kt-factorization approach using Kimber-
Martin-Ryskin (KMR) and Kutak-Stasto (KS) unintegrated gluon distri-
bution (UGDF). We include both direct color-singlet production gg —
J/1g as well as a feed-down from x. — J/1y and ¢ — J/¢X. The cor-
responding matrix elements for gg — J/v, gg — ¢’ and gg — x. include
parameters of the nonrelativistic space wave functions of the quarkonia
at r = 0, which are taken from potential models from the literature. We
calculate the ratio of the corresponding cross sections for y.o/xc1. We
compare our results with ATLAS experimental data. Differential distri-
butions in rapidity and transverse momentum of .J/1 and 1)’ are calculated
and compared to experimental data of the ALICE and LHCb collabora-
tions. We present results for three different values of energy 2.76 TeV, 7
TeV and 13 TeV.
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1 Introduction

There is a long-standing lack of convergence in understaning production of J/v
quarkonia in proton-proton or proton-antiproton collisions. Some authors think that
the cross section is dominated by the color-octet contribution, other authors believe
that the color-singlet contribution dominates. In the present paper we wish to calcu-
late the color-singlet contribution as well as possible in the NRQCD k;-factorization.
In the present approach we concentrate rather on small transverse momenta of J/v
or ¢’ relevant for ALICE and LHCb data [I], 2] B, 4, [5]. We expect that color-singlet
contributions may dominate in this region of the phase space. Finally ¢ quarkonium
also has a sizable branching fraction into J/¢¥X [0].

2 Inclusive production of J/¢ and ¢/ mesons in the
NRQCD k;-factorization approach
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Figure 1: The leading-order diagram for prompt J/¢ (¢') meson production in the
k;-factorization approach.

The main color-singlet mechanism for the production of J/¢ and ¢’ mesons is
shown in Fig[I] (left panel). We restrict ourselves to the gluon-gluon fusion mechanism.
In the NLO the differential cross section in the k,-factorization can be written as:
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The corresponding matrix element squared for the gg — J/1g is
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The matrix element is taken from [7]. In our calculation we choose the scale of the
running coupling constant as: o — o (u?)as(pd)as(13) , where 3 = max(q3,, m?),
us = max(qs, m?) and p3 = m?, where here m; is the J/¢ transverse mass. The
factorization scale in the calculation was taken as pz = (m7 +p;,)/2.

In the k;-factorization approach the leading-order cross section for the y. meson
production can be written as:
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which can also be used to calculate rapidity and transverse momentum distributions of
the x. mesons. In the last equation F; are unintegrated gluon distributions and o4, .
is gg — X. (off-shell) cross section. The situation is illustrated diagrammatically in
Figlll (right panel).

The matrix element squared for the gg — x. subprocess is

(Mg |* o a[R'(0)]* . (4)

We used the matrix element taken from Ref. [§].

For this subprocess the best choice for running coupling constant is: «a? —
as(ud)as(p3), where p? = maz(qi,, m?) and p3 = max(qs,, m?). Above m; is trans-
verse mass of the y. meson. The factorization scale for the x. meson production is

fixed as p% = m?.

3 Results
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Figure 2: Rapidity distribution of ¢ meson with the KMR (left plots) and mixed
UGDFs (KS and KMR, right plots). The ALICE data [4] are shown for comparison.



In FigPl we show differential cross section in rapidity for 1" production at 7 TeV.
Our results are compared with ALICE experimental data [4]. In the left panel we
present results for the Kimber-Martin-Ryskin (KMR) UGDF and in the right panel
for mixed Kimber-Martin-Ryskin (KMR) and Kutak-Stasto (KS) UGDFs. Because
the KMR UGDF alone overshoots experimental data for rapidity distribution the
best solution is to take the KMR distribution for large x and KS for small x. For v’
meson we have to include only the direct diagram so it’s easy to compare our result
with experimental data.
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Figure 3: Rapidity distribution .J/¢ meson from y. deacy with KMR UGDF. The
ALICE and LHCD data [1], 2, 3, 14} [5] are shown for comparison.

In FigBlwe present results for three different values of energy: W = 2.76 TeV (left),
W = 7 TeV (middle) and W = 13 TeV (right). The presented results are calculated
here with the KMR UGDF. The dotted lines are for y.; meson contribution, the
dot-dashed lines are for y., meson contributions and the solid lines are a sum of these
two components.
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Figure 4: Rapidity distribution of J/1) meson with the KMR and mixed UGDF's (KS
and KMR). The ALICE and LHCD data [I], 2], B, 4, [5] are shown for comparison.

In Figll we present results for three different values of energy: W = 2.76 TeV
(left), W = 7 TeV (middle) and W = 13 TeV (right). The presented results are
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calculated here with the KMR UGDF for ¢ and .J/v¢ meson direct contribution and
mixed UGDF (KMR and KS) for y. meson. The green dot-dashed lines are for ¢’
meson contribution. The black dashed lines are for J/v direct contribution. The solid
blue lines are for x.; and y. mesons and the solid red lines are for all components.

4 Conclusion

We have calculated the color-singlet contribution in the NRQCD k;-factorization and
compared our results with ALICE and LHCb data. Our results in rapidity are al-
most consistent or even exceed experimental data. Cross section strongly depends on
UGDF and we think the best solution is to use mixed UGDFs (KMR-KS). Data at
13 TeV may require saturation effects in the small-x gluon. In our approach only a
small room is left for color-octet contribution.
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