An unified in-field measurement and alignment software for experiments and accelerators at CERN large scale metrology section.

IWAA 2016 (03-07 Oct.) - Grenoble - France

P. SAINVITU, CERN – Geneva – Switzerland
Content

• Introduction
 • Context
 • Motivation
• Constraints
 • Use cases
 • Multi-user modes
 • Dependencies
 • Coordinate systems
 • Environment of use
 • Different views of the data

• Method
 • Development process
 • Platform & development language
 • Workflow
 • Architecture

• Status of the development
 • First iterations
 • Next iterations

• Summary & Outlook
CERN complex alignment - geodesic measurements

- Theodolites, tachometers, trackers and reflectors
 - Angles
 - Distances
- Levels and staffs
 - Offsets to horizontal planes
- Ecartometers
 - Offsets to vertical planes
- Tilt sensors
 - Inclinations
In-field acquisitions - Divergences & similarities

Measurement
- **Repetitive**
- **Diversify**

Tolerances
- **Well-defined**
- **Variable**

Sequence
- **Controlled**
- **Non-existent**

Main user
- **Industrial Support**
- **CERN STAFF**

Coord. System
- **Global**
- **Local**

Most processing
- **Postpone**
- **Immediate**

Business model
- Elements, points, networks, geodetic measurements, ...

Instrument
- Communication librairies

Calculation
- Survey Software dependencies
Main drawbacks

- From 90’s, in VB6 and VBA
- GUI are French only
- Not “touch screen” friendly
- Maintenance
 - New instruments + computing libraries replacement
 >>> double implementation
 - Performed by several surveyors
 >>> duplicate parts + Procedural and OO programming

≈ 600 lines

14 levels of conditional statements

The challenge

- Unify survey data acquisition tools;
- Facilitate the maintenance;
- Open doors to more up to date interfaces.

Rewriting of a single application that fulfil all the constraints
Constraints

Use cases - Multi-user mode

- Dependencies
 - Coordinate systems
 - Environment of use
 - Data Views

Advanced user
- Flexibility

Guided user
- Controlled step by step procedures

Use cases:
- Multi-user mode

Dependencies:
- Coordinate systems
- Environment of use
- Data Views

Advanced user features:
- Theodolite Measurement
- Tilt measurement
- Levelling measurement
- Ecartometry measurement
- Magnet alignment
- Tour d’horizon
- Magnet pre-alignment
- Implantation 3D
- Altimetric pathway
- Radial smoothing

Guided user features:
- Instrument reading
- Station Setup
- Export
- Import
- Geode db
- PcTopo32
- Report s

Advanced user advantages:
- Controlled step by step procedures

Guided user advantages:
- Flexibility

TSUNAMI
Constraints

Use cases - Multi-user mode - Dependencies
Coordinate systems - Environment of use - Data Views

- **Base de données Geode**
- **Calculations**
- **Instrument communications**
- **Transf.**
- **TSUNAMI**
- **Custom file types for exchange and/or storage**
- **Compensation**
- **Transformations**
- **Executable files**
- **Géomètres**

Dynamic libraries

Instrument communications

Calculations

Custom file types for exchange and/or storage

Compensation

Transformations

Executable files

SurveyLib.dll (Calculs topographiques)
Shapes.xlma (Ajustement paramétrique par moindres carrés)
LTControl.dll
LTVideo.dll
GeoCom32.dll
GCom105.dll
(T3000.dll (Communication théodolite)
CalcTopo.dll (Calculs topographiques)

Dynamic libraries

Instrument communications

Calculations

Custom file types for exchange and/or storage

Compensation

Transformations

Executable files

SurveyLib.dll (Calculs topographiques)
Shapes.xlma (Ajustement paramétrique par moindres carrés)
LTControl.dll
LTVideo.dll
GeoCom32.dll
GCom105.dll
(T3000.dll (Communication théodolite)
CalcTopo.dll (Calculs topographiques)
Constraints

Use cases - Multi-user mode - Dependencies

Coordinate systems - Environment of use - Data Views

Accelerators

Physics experiments

CERN CS : XYZ / XYH

Physicist CS
Survey CS
Constraints

Use cases - Multi-user mode - Dependencies
Coordinate systems - Environment of use - Data Views

List Tree 3D
Method

Development process - Platform & language - Workflow - Architecture
Method

Development process - **Platform & language** - Workflow - Architecture

- Calculations dependencies
- Instrument libs and API
- Wrappers
Method

Development process - Platform & language - Workflow - Architecture

Modularity

Framework mechanisms

Design Patterns

Reusability Validity Integrity Efficiency
Extensibility
Maintainability
Interoperability Reliability

Quality

Conviviality Transparency ...

Efficiency Reliability Conviviality Transparency ...
Method

Development process - Platform & language - Workflow - Architecture
Method
Development process - Platform & language - Workflow - Architecture
Method

Development process - Platform & language - Workflow - **Architecture**

Model
(Data)

state change events ➔ *updates*

Presenter
(TSUNAMI module)

user events ➔ *updates*

View
(GUI)

Add an Advanced module
Add one of the following module which will give you complete freedom of use: the module, levelling, tilt or offset module, or object managers
Status of the development

First iterations
• Design Artefacts
• Prototype
 • Managers & dependencies;
 • Ecartometry, levelling & Theodolite.

Next iterations
• Architectural choices + implementation:
 • Tilt measurement;
 • Guided modules.
Summary & Outlook

2 data acquisition software >> TSUNAMI (2 user modes)

• Development in progress…
 • Global architecture delivered >> Satisfy constraints + ensure quality
 • Most core functionalities implemented

• Full-scale tests (next year)
 • CERN survey team >> feedback >> Corrections and adjustments

• First version >> next long shutdown

• Architecture + documentation >> ease the maintenance

• Achieved modularity >> stimulate extensions
 >> reuse of code in future projects.
Thank you for your attention.
Method

Development process - Platform & language - **Workflow** - Architecture

- Start tSUNAMI
- Advanced user
- Identify user
- Contractor
- Allow all module
- Allow Guided/ template Modules
- Select a Guided/ template module
- Theodolite, Ecartometry, Levelling, ...
- Alignment, Implantation, Td’H
- Need station setup
- Setup the Stations
- Measure elements
- Export and Save
- No need of setup
- Need station setup
TSU-NAMI