Research on laser tracker measurement accuracy and data processing

Liang Jing
IHEP, CHINA
2014.10
1. Accuracy test experiment for laser tracker
 • In the transversal direction
 • In the longitudinal direction
 • In the vertical direction
2. Repeatability statistics of laser tracker in BEPCII
 • Layout of BEPCII storage ring control network
 • BEPCII control network measurement scheme
 • Repeatability statistics from 2007-2010
3. Three dimension distance network adjustment
 • Theoretical basis
 • Simulation result
4. Summary
1. Accuracy test experiment for laser tracker

We used the instrument calibration device of Changcheng Institute of Metrology & Measurement to carry out the laser tracker accuracy test experiment. A laser interferometer in the device is as the standard and gives the reference lengths in horizontal and vertical direction. We tested the laser tracker accuracy in the transversal, longitudinal, and vertical direction.

Horizontal calibration device: 30m
Vertical calibration device: 3m
1. Accuracy test experiment for laser tracker --- in the transversal direction

The laser tracker stationed away from the horizontal device 9m and 3m separately. The target moves along the guide rail, from the difference between the laser tracker measuring distance and the standard distance given by laser interferometer, we can calculate the laser tracker accuracy in the transversal direction.
1. Accuracy test experiment for laser tracker

--- in the longitudinal direction

The laser tracker stationed on one side of the guide rail. The target moves along the guide rail, from the difference between the laser tracker measuring distance and the standard distance given by laser interferometer, we can calculate the laser tracker accuracy in the longitudinal direction.
The laser tracker stationed away from the vertical device 9m and 3m separately. The target moves along the guide rail in the vertical direction, from the difference between the measuring distance and the standard distance, we can calculate the laser tracker accuracy in the vertical direction.
We measured 270 distances using Faro Xi laser tracker, the RMS of difference is shown as follow.

It is more accurate in the longitudinal direction, the RMS of difference is 4.3 µm. It is mostly influenced by distance measurement error in the longitudinal direction, and in the two other direction mostly influenced by angle measurement error.

<table>
<thead>
<tr>
<th>Direction</th>
<th>Distance of laser tracker to guide rail</th>
<th>Measurement range</th>
<th>RMS of difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>transversal</td>
<td>9m</td>
<td>4m</td>
<td>22.1µm</td>
</tr>
<tr>
<td></td>
<td>3m</td>
<td>8m</td>
<td>17.9µm</td>
</tr>
<tr>
<td>longitudinal</td>
<td>0.3m</td>
<td>32m</td>
<td>4.3µm</td>
</tr>
<tr>
<td>vertical</td>
<td>9m</td>
<td>2m</td>
<td>11.1µm</td>
</tr>
<tr>
<td></td>
<td>3m</td>
<td>2m</td>
<td>17.3µm</td>
</tr>
</tbody>
</table>
2. Repeatability statistics in BEPCII storage ring

---layout of tunnel control network

BEPCII storage ring tunnel is about 240 m in circumference. Control point sections are set with the interval of 6 m along the tunnel. In each section, there are four control points, two on the floor, one on the inner wall and one on the outer wall.

There are 67 control point sections along tunnel, totally 268 control points.
2. **Repeatability statistics in BEPCII storage ring**

--- *measurement scheme*

We used laser tracker to carry out control network survey by free station method. The measuring station is set between every two neighboring sections.

Each station laser tracker should measure 30 points and the number of common control points between neighboring stations is 25. It is more than 30 plus the magnet points.
Using the common points of neighboring stations, we can translate neighboring coordinate system to the same coordinate system to calculate the slantwise distance, horizontal angle and vertical angle difference of neighboring stations.

Repeatability statistics of laser tracker in BEPCII storage ring from 2007-2010 is shown as follows.
2. Repeatability statistics in BEPCII storage ring

--- slant distance Repeatability statistics

![Graph showing slantwise distance difference](image-url)
2. Repeatability statistics in BEPCII storage ring

--- horizontal angle Repeatability statistics

Horizontal Angle Difference

Data Number

- 2007
- 2008
- 2009
- 2010
2. Repeatability statistics in BEPCII storage ring

--- vertical angle Repeatability statistics

Vertical Angle Difference

Differences (°)

Data Number

2007

2008

2009

2010
2. *Repeatability statistics in BEPCII storage ring*

--- *Repeatability statistics result*

From the graph above, the maximum slant distance deviation is 0.2mm. the maximum horizontal and vertical angle deviation are 90” and 30”. Distance measurement of laser tracker is more stable.

RMS of Repeatability is shown as follows. 2” and 3” in 10m measurement range amount to 0.1mm and 0.15mm, distance measurement repeatability is better than angle measurement.

<table>
<thead>
<tr>
<th>year</th>
<th>slant distance Repeatability (mm)</th>
<th>horizontal angle Repeatability (")</th>
<th>vertical angle Repeatability (")</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>0.045</td>
<td>2.02</td>
<td>2.82</td>
</tr>
<tr>
<td>2009</td>
<td>0.066</td>
<td>2.293</td>
<td>4.01</td>
</tr>
<tr>
<td>2008</td>
<td>0.097</td>
<td>3.257</td>
<td>2.35</td>
</tr>
<tr>
<td>2007</td>
<td>0.16</td>
<td>3.057</td>
<td>3.838</td>
</tr>
</tbody>
</table>
3. Three dimension distance network adjustment

Laser tracker distance measurement accuracy and repeatability are better than angle measurement. We consider only use distance measurement in data processing to reduce measuring error. So three dimension distance network adjustment program is on progress.
3. Three dimension distance network adjustment

---- theoretical basis

Assume S_{ij} to be the distance from station(L_i) to point (P_j), the station(L) coordinates are $(\bar{x}_i, \bar{y}_i, \bar{z}_i)$, $(i=1, \ldots, m)$, point (P) coordinates are $(\bar{x}_j, \bar{y}_j, \bar{z}_j)$ $(j=m+1, \ldots, m+n)$, so the observation equation is:

$$(\bar{x}_j - \bar{x}_i)^2 + (\bar{y}_j - \bar{y}_i)^2 + (\bar{z}_j - \bar{z}_i)^2 = (S_{ij} + \Delta S_{ij})^2$$

we can get error equation from linearized observation equations:

$$v_{ij} = c_{ij} \delta X_i + d_{ij} \delta Y_i + e_{ij} \delta Z_i - c_{ij} \delta X_j - d_{ij} \delta Y_j - e_{ij} \delta Z_j - l_{ij}$$
3. Three dimension distance network adjustment

---- theoretical basis

The error equation coefficient are:

\[
\begin{align*}
 c_{ij} &= -\frac{X_j^0 - X_i^0}{S_{ij}^0} \\
 d_{ij} &= -\frac{Y_j^0 - Y_i^0}{S_{ij}^0} \\
 e_{ij} &= -\frac{Z_j^0 - Z_i^0}{S_{ij}^0} \\
 l_{ij} &= S_{ij} - S_{ij}^0
\end{align*}
\]

Where:
\(X_i^0, Y_i^0, Z_i^0\) are the approximate coordinates of stations.
\(X_j^0, Y_j^0, Z_j^0\) are the approximate coordinates of points.

\(S_{ij}^0\) are the approximate measuring distances:

\[
S_{ij}^0 = \sqrt{(X_j^0 - X_i^0)^2 + (Y_j^0 - Y_i^0)^2 + (Z_j^0 - Z_i^0)^2}
\]
Matrix form of error equation: \[V = A \delta X - l \]

According to the least square method, the equation can be solved:

\[A^T P A \delta X = A^T P l \]
3. Three dimension distance network adjustment

--- simulation result

We simulate a Linac control network which consist of 55 points to test the program. Random error from -0.1mm to 0.1mm is added to simulation measurements, and the deviation of adjustment result to the theoretical value is shown as follows, the average deviation is 0.03mm. The precision evaluation results are from -0.1mm to 0.1mm.

![Graph showing deviation from the theoretical value](image)
1. From the laser tracker test experiment, it is more accurate in the longitudinal direction. Distance measurement has higher accuracy than angle measurement.

2. Repeatability statistics of laser tracker in BEPCII storage ring from 2007-2010 shows that distance measurement repeatability is better than angle measurement repeatability.

3. Three dimension distance network adjustment program is on progress, simulation results are correct. More test will be done, such as using actual measurement data.
Thank you!