Alignment methods developed for the validation of the thermal and mechanical behavior of the Two Beam Test Modules for the CLIC project

Hélène MAINAUD DURAND, on behalf of the CLIC pre-alignment team
Agenda

Thermal & mechanical behavior of TBTM:
alignment methods developed & misalignments observed

Outline

- Introduction
- Short range strategy of pre-alignment on module components
- Preparation of the thermo-mechanical tests
- Methods of measurements developed
- Results obtained
Introduction

CLIC project
Introduction

CLIC module

Components:

Quadrupole
PETS
Accelerating Structure (AS)

Modules = key component of CLIC
• Length = 2 m
• 20 000 modules
Introduction

- Validation of the assembly & integration of the components
- Validation of the short range strategy of pre-alignment
- A better understanding of thermal and mechanical behavior of a module under different operating modes

Misalignments observed
Short range strategy of pre-alignment

Pre-alignment of several components on 1 support

2 cradles per girders “snake configuration”

cWPS & actuators coupled to
Short range strategy of pre-alignment

Process of pre-alignment

Pre-alignment on girder

Fiducialisation

Installation in tunnel
Preparation of thermo-mechanical tests

Context of measurements

Tunnel environment reproduced by air conditioning & ventilation system:
- T from 20°C to 40°C
- Longitudinal air speed: 0.3 to 0.8 m/s

All components equipped with electric heaters to reproduce the power dissipation estimated in the module.

Cooling system integrated in RF components (not in the DB quadrupole)

Finite Element Analysis prepared with ANSYS to simulate displacements (but ready during the measurements process)

1st operating scenario simulated:
- Zero position
- Power-up of DB quadrupole
- Unloaded conditions (RF but no beam)
- Loaded conditions (RF + beam)
Preparation of thermo-mechanical tests

Measurements using the laser tracker AT 401

Position of the fiducials w.r.t V-shaped support axis

Position of the fiducials w.r.t mechanical axis of the component
Preparation of thermo-mechanical tests

Zero position of the components

- DB Vertical
 - PETS1
 - DBQ1
 - PETS2
 - DBQ2

- MB Vertical
 - AS1
 - AS2
 - AS3
 - AS4
 - AS5
 - AS6
 - AS7
 - AS8

- DB Radial
 - PETS1
 - DBQ1
 - PETS2
 - DBQ2

- MB Radial
 - AS1
 - AS2
 - AS3
 - AS4
 - AS5
 - AS6
 - AS7
 - AS8
Methods of measurements

Means of measurements

- **cWPS coupled to the cradle**: Permanent monitoring of the position of the girder (mean axis of V-shaped support), within a few µm.
- **AT 401 measurements**: Position of the components on the girder.
Methods of measurements

AT 401 measurements

- Nobody allowed in the room during the measurements
- Use of a heavy tripod for a better stability
- Duration of a station < 45’
- Warm-up of AT401 4 hours before the first measurements
- All measurements performed back side and front side, integrated over 5”.
- Fiducials located on the girder considered as references during best-fits (as measured by CMM)
Results: misalignments observed

Misalignments of components

How to understand the data?

initial position of the mean axis of girder

current position of the mean axis of component w.r.t mean axis of girder

current position of the mean axis of girder

initial position of the mean axis of girder

DBQ heating

Vertical (mm)

Longitudinal (mm)
Results: misalignments observed

Misalignments of components

During the DBQ heating: vertical displacements of \(~40\mu m\) are observed, as no cooling system is associated with the DBQ (for a T° of 35 $^\circ C$)

The unloaded cycle has been performed twice: this gives a good idea of the repeatability, better than 10 μm and confirms the precision of measurements.
Results: misalignments observed

Misalignments of components

No radial displacements visible, which seems logical: a temperature increase should not misalign radially the reference axis of the component as it is symmetric.

Very good repeatability: this confirms the precision of measurements.
Results: misalignments observed

Misalignments of components

Misalignments during the first phase are very small, which is logical as there is no heating on the MB side.

The cooling system plays its role during the unloaded and loaded phases: misalignments $< 20 \mu m$
Results: misalignments observed

Misalignments of components

No radial misalignments observed as the component is symmetric.
Summary

One first duty cycle (machine start-up) simulated

- Heaters added to the components, cooling system to RF components
- T© cWPS, AT401 measurements performed
- FEM carried out
- Very small impact of such cycle on the alignment of components that are cooled down
- Good matching between simulations and measurements
- At the limit of the uncertainty of measurements of AT401

Improvement of the methods of measurements needed

- Have a better knowledge of thermal expansion of the cradle (where sensors are located) w.r.t girder
- Increase the number of stations per side
- Use simultaneously 4 AT 401 measuring the position of the components
- To equip all the components with fiducials
- To automatize the process of measurements

Would anybody have an experience in that?