Kaonic 3He and 4He X-ray measurement in SIDDHARTA

T. Ishiwatari / SMI, Vienna On behalf of SIDDHARTA collaboration

PLB681(09)310 PLB697(11)199

13. 6, 2011, Hadron2011, Munich, Germany

SIDDHARTA Collaboration

M. Bazzi^a, G. Beer^b, L. Bombelli^c, A.M. Bragadireanu^{a,d}, M. Cargnelli^e, G. Corradi^a, C. Curceanu (Petrascu)^a, A. d'Uffizi^a, C. Fiorini^c, T. Frizzi^c, F. Ghio^f, B. Girolami^f, C. Guaraldo^a, R.S. Hayano^g, M. Iliescu^{a,d}, T. Ishiwatari^{e,*}, M. Iwasaki^h, P. Kienle^{e,i}, P. Levi Sandri^a, A. Longoni^c, V. Lucherini^a, J. Marton^e, S. Okada^a, D. Pietreanu^a, T. Ponta^d, A. Rizzo^a, A. Romero Vidal^a, A. Scordo^a, H. Shi^g, D.L. Sirghi^{a,d}, F. Sirghi^{a,d}, H. Tatsuno^g, A. Tudorache^d, V. Tudorache^d, O. Vazquez Doce^a, E. Widmann^e, J. Zmeskal^e

^a INFN, Laboratori Nazionali di Frascati, Frascati (Roma), Italy

- ^b Dep. of Phys. and Astro., Univ. of Victoria, Victoria B.C., Canada
- ^c Politechno di Milano, Sez. di Elettronica, Milano, Italy

University of Victoria

- ^d IFIN-HH, Magurele, Bucharest, Romania
- ^e Stefan-Meyer-Institut für subatomare Physik, Vienna, Austria

^f INFN Sez. di Roma I and Inst. Superiore di Sanita, Roma, Italy ^g Univ. of Tokyo, Tokyo, Japan

^h RIKEN, The Inst. of Phys. and Chem. Research, Saitama, Japan ⁱ Tech. Univ. München, Physik Dep., Garching, Germany

Experimental results before SIDDHARTA

Z	Α	Target	Last	Level shift	
			orbit	Old experiments	New experiments
1	1	¹ H	1 s	Attractive	Repulsive
				Davies (79), Izycki (80), Bird (83)	KpX(97), DEAR (05)
1	2	² D	1 s	No data	No data
2	3	³ He	2р	No data	No data
2	4	⁴He	2р	Large	Small
				Wiegand (71), Batty (79), Baird (83)	KEK E570 (07)

Recently performed experimental results: different from old data

SIDDHARTA experiment: All light targets (from hydrogen to helium-4) Confirmation of "New experimental results" and improvement of precession First data of kaonic deuterium and kaonic helium-3 Introduction
-- History --

Kaonic atom data (Z≥3)

Solving the kaonic helium puzzle

More than 3σ difference

Experimental confirmation need! → SIDDHARTA experiment

SIDDHARTA Experiment

SIDDHARTA Experimental Setup

Comparison of X-ray detectors

T.Ishiwatari, Hyp. Int. 194(09)165

experiment		КрХ	DEAR	E570	
Detector		Si(Li)	CCD	SDD	
Area	[mm2]	200	724	100	
Thickness [mm]		5	0.03	0.26	
∆ E (FWHM)	[eV]	× 10	170	185	
∆ t (FWHM)	[ns]	290	\times -	430	

Kaonic He-4 X-rays at SIDDHARTA

Target size: r=6cm, h=12 cm Target density:27 K, 0.95 bar = 10 bar at NTP

First measurement with gas target

Installed SDD:144 cm², Used in Analysis: 60 cm² SDD operation temp. :170 K, SDD Energy resolution: ~150 eV (at 6 keV) For precise determination: Fe source+ Ti foil Installed (4.5 keV & 5.9 keV X-rays as in-beam calibration lines)

Summary of KHe-4 shifts (up to 2007)

Data taking periods of SIDDHARTA in 2009

Data taking periods of SIDDHARTA in 2009

Removed ⁵⁵Fe source in other data

Evaluation of systematic error

Evaluation of systematic error

Kaonic Helium-3 energy spectrum

Kaonic 4He 2p level shift

	Target	Shift [eV]
KEK E570	Liquid	+2±2±2 eV
SIDDHARTA (w/ 55Fe)	Gas	+0±6±2 eV
SIDDHARTA (New)	Gas	+5±3±4 eV

Kaonic 3He 2p level shift

	Target	Shift [eV]
SIDDHARTA	Gas	-2±2±4 eV
J-PARC E17	Liquid	??±?±? eV

$$\begin{array}{ll} \text{shift} \ \Delta E_{2p} = E_{\exp} - E_{e.m.} & \Delta E_{2p} > 0 ("attractive" shift), \\ \Delta E_{2p} < 0 ("repulsive" shift), \end{array}$$

PLB697(2011)199

	Shift [eV]	Reference
KEK E570	$+2\pm2\pm2$	PLB653(2007)387
SIDDHARTA (He4 with 55Fe)	+0±6±2	PLB681(2009)310
SIDDHARTA (He4)	$+5\pm3\pm4$	arXiv:1010.4631,
SIDDHARTA (He3)	-2±2±4	PLB697(2011)199

	Shift [eV]	Reference
KEK E570	$+2\pm2\pm2$	PLB653(2007)387
SIDDHARTA (He4 with 55Fe)	+0±6±2	PLB681(2009)310
SIDDHARTA (He4)	$+5\pm3\pm4$	arXiv:1010.4631,
SIDDHARTA (He3)	-2±2±4	PLB697(2011)199

Summary

- To check whether abnormal shift on K-3He and 4He 2p state, kaonic He 3d-2p transition was measured in SIDDHATRA
- First measurement in gas targets
- First observation of kaonic 3He, prior to J-PARC
- Shift both of 3He and 4He was found to be small

	Shift [eV]	Reference
K-He4 (with 55Fe)	+0±6±2	PLB681(2009)310
K-He4	$+5\pm3\pm4$	arXiv:1010.4631,
K-He3	-2±2±4	PLB697(2011)199

Outlook

- Isotope shift between He3& He4??
- Determination of width
- Determination of X-ray yields between gas &liquid
- Further kaonic atom measurements with Z>=3

	Shift [eV]	Reference
K-He4 (with 55Fe)	+0±6±2	PLB681(2009)310
K-He4	$+5\pm3\pm4$	arXiv:1010.4631,
K-He3	-2±2±4	PLB697(2011)199

Supported by

HadronPhysics I3 FP6 European Community program: Contract No. RII3-CT-2004-506078

BMW_F^a

Austrian Federal Ministry of Science and Research BMBWK [650962/0001 VI/2/2009]

Grant-in-Aid for Specially Promoted Research (20002003), MEXT, Japan

European Community Research Infrastructure Integrating Activity "Study of Strongly Interacting Matter" (HadronPhysics2, Grant Agreement No. 227431) under the Seventh Framework Programme of EU

[2-CeX 06-11-11/2006]

[P20651-N20]

Evaluation of systematic error

"kaon-coincidence" with K-d data

Kapton window (C22H10N2O5)

Fit of kaonic (C/O/AI) atom X-ray lines with known energy

Evaluation of systematic error

confirmation of the accuracy of energy determination & peak shift

Photon cross section in helium

Expected X-ray yields in helium gas

Kaonic atom data with Z>3

- 1. Errors on shift & width are large.
- 2. Isotope difference on shift & width were not measured in almost all the targets (Except Boron).
- 3. X-ray yield vs. target density
- 4. Metal or solid targets were used (Except: hydrogen, deuterium, He-3&He-4, nitrogen)

Kaonic atom data with Z>3

E. Friedman et al. / Nuclear Physics A579 (1994) 518-538

Table 1			
Compilation	of K ⁻	atomic d	lata

Nucleus	Transition	ϵ (keV)	Γ (keV)	Y	Γ_{μ} (eV)	Ref.
He	3→2	-0.04 ± 0.03	~		_	[15]
		-0.035 ± 0.012	0.03 ± 0.03	-	-	[16]
Li	3→2	0.002 ± 0.026	0.055 ± 0.029	0.95 ± 0.30	-	[17]
Be	3→2	-0.079 ± 0.021	0.172 ± 0.58	0.25 ± 0.09	0.04 ± 0.02	[17]
¹⁰ B	$3 \rightarrow 2$	-0.208 ± 0.035	0.810 ± 0.100	-	-	[18]
¹¹ B	$3 \rightarrow 2$	-0.167 ± 0.035	0.700 ± 0.080	-	-	[18]
С	3→2	-0.590±0.080	1.730 ± 0.150	0.07 ± 0.013	0.99 ± 0.20	[18]
0	$4 \rightarrow 3$	-0.025 ± 0.018	0.017 ± 0.014	-	-	[19]
Mg	4 → 3	-0.027 ± 0.015	0.214 ± 0.015	0.78 ± 0.06	0.08 ± 0.03	[19]
Al	4 → 3	-0.130 ± 0.050	0.490 ± 0.160		_	[20]
		-0.076 ± 0.014	0.442 ± 0.022	0.55 ± 0.03	0.30 ± 0.04	[19]
Si	4 → 3	-0.240 ± 0.050	0.810 ± 0.120	-	-	[20]
		-0.130 ± 0.015	0.800 ± 0.033	0.49 ± 0.03	0.53 ± 0.06	[19]
P	$4 \rightarrow 3$	-0.330 ± 0.08	1.440 ± 0.120	0.26 ± 0.03	1.89 ± 0.30	[18]
S	4 → 3	-0.550 ± 0.06	2.330 ± 0.200	0.22 ± 0.02	3.10 ± 0.36	[18]
		-0.43 ± 0.12	2.310 ± 0.170	-	-	[21]
		-0.462 ± 0.054	1.96 ±0.17	0.23 ± 0.03	2.9 ± 0.5	[19]
Cl	$4 \rightarrow 3$	-0.770 ± 0.40	3.80 ± 1.0	0.16 ± 0.04	5.8 ±1.7	[18]
		-0.94 ± 0.40	3.92 ± 0.99	-	_	[22]
etermi	ined shift	and width us	ing natural	abundan	ce.	[21]

Determined shift and width using **natural abundance**, **assuming the same shift & width & yield** Nitrogen data missing!

Isotope difference between 10B and 11B(??)