The Exotic $\eta'\pi^-$ Wave in 190 GeV $\pi^- p \rightarrow \eta'\pi^- p$ at COMPASS

Tobias Schlüter for the COMPASS collaboration Ludwig-Maximilians-Universität München

June 16, 2011

$\pi\eta'$ in diffractive scattering

Possible quantum numbers for the $\pi\eta'$ system:

Hence: *P*-wave resonant \rightarrow exotic meson.

This system has been studied by the following experiments:

experiment	beam momentum	reaction	year published
VES	$37{ m GeV/c}$	$\pi^- N o \eta' \pi^- N$	1993, 2005
E852	$18{ m GeV/c}$	$\pi^- p ightarrow \eta' \pi^- p$	2001

They all see a very strong *P*-wave.

$\pi\eta'$ in diffractive scattering

Possible quantum numbers for the $\pi\eta'$ system:

Hence: *P*-wave resonant \rightarrow exotic meson.

This system has been studied by the following experiments:

experiment	beam momentum	reaction	year published
VES	$37{ m GeV/c}$	$\pi^- N o \eta' \pi^- N$	1993, 2005
E852	$18{ m GeV/c}$	$\pi^- p ightarrow \eta' \pi^- p$	2001
COMPASS	$190{ m GeV/c}$	$\pi^- p o \eta' \pi^- p$	2012 (?)

They all see a very strong *P*-wave.

Previous $\pi\eta'$ results – VES

Results from VES (Be target, $37 \,\mathrm{GeV}$):

- ▶ VES sees the *a*₂(1320) (peak in *D*₊-wave)
- VES says: "there may be an a₂(1700)" explaining the broad structure in the D₊-wave
- ► VES says: "there may be an exotic π₁(1600)"

Note the jump in the relative $P_+ - D_+$ phase near $2 \,\mathrm{GeV}$

Previous $\pi\eta'$ results – BNL E852

Results from BNL E852 (proton target, $18 \,\mathrm{GeV}$):

- they see the $a_2(1320)$ (peak in D_+ -wave)
- they add a G_+ -wave to the fit, gives: $a_4(2040)$
- ▶ they explain the broad D₊-wave with an a₂(1700) and the P₊-wave with an exotic resonance π₁(1600)
- they find an unusual t-slope

Note the various jumps at $2\,{\rm GeV}$

Remarks on PWA formalism

For a given mass, two-body states in the reflectivity basis (ϵ, ℓ, m) have the form $(\theta, \phi$ Gottfried-Jackson angles)

$$A_{\epsilon lm} \propto Y_{\ell}^m(heta, 0) egin{cases} \sin(m\phi) & \epsilon = +1 & (m > 0) \ \cos(m\phi) & \epsilon = -1 & (m \ge 0) \end{cases}$$

The observed intensity is then proportional to

$$I(\theta,\phi) = \left|\sum_{lm} T_{+1,\ell m} A_{+1,\ell m}(\theta,\phi)\right|^2 + \left|\sum_{\ell m} T_{-1,\ell m} A_{-1,\ell m}(\theta,\phi)\right|^2$$

where the production amplitudes $T_{\epsilon\ell m}$ were introduced. Important observations: only negative reflectivity (= unnatural exchange) contributes to intensity at $\phi = 0$; all positive reflectivity waves with m = 1 have the same ϕ dependency. Negative reflectivity compatible with zero in VES, BNL, COMPASS analyses.

The COMPASS spectrometer

- fixed target experiment at CERN's SPS accelerator
- variety of beams available (pos/neg muon, pos/neg hadron)
- variety of targets (polarized targets, LH2, solid state)
- diverse physics program
- > 2008, 2009 : hadron beam runs with various targets

In this talk: 2008 data, negative pion beam at 191 ${\rm GeV},$ LH2 target

Data selection

- select exclusive events with 3 tracks + recoil proton, 2 good ECAL clusters
- select $\eta \rightarrow 2\gamma$ (left)
- select $\eta' \rightarrow \pi^- \pi^+ \eta$ (right)

Data selection

First look at the data: t slopes

We find indication for a continuous transition between different production mechanisms, fitting the t distribution in several areas

mass bin	fit with $A \exp(-B t)$	fit with $A t \exp(-B t)$
m < 1.5	5.5	8.2
1.5 < m < 1.9	5.1	7.5
1.9 < m < 2.2	4.8	7.1
2.2 < <i>m</i> < 3	4.6	6.9

(BNL fitted with a simple exponential between $0.25 < |t| < 1.0 \,\mathrm{GeV/c^2}$, they found $B = 2.93/\mathrm{GeV^2}$) We find: higher mass \rightarrow broader slope and: clear contradicition with BNL

Input to the PWA

Like previous analyses, we used all waves with $\ell \leq 2$, $m \leq 1$ and additionally the $\epsilon = +1$, $\ell = 4$, m = 1. I.e.:

$\epsilon = +1$			P_+		D_+	G_+
$\epsilon = -1$	S_0	P_0	P_{-}	D_0	D_{-}	

As expected from Pomeron (i.e., natural) exchange, the negative reflectivity waves turn out compatible with zero (below $2 \,\mathrm{GeV}$). Ambiguities are bounded by the size of the negative waves, i.e. they are not a problem.

PWA results – P_+ and G_+ waves

Clear phase-motion from $a_2(1320)$, jump in phase near 2 GeV, slow phase-motion in range of P_+ -wave intensity peak.

PWA results – can the G_+ -wave clarify the picture?

clear phase-motion in G_+ -wave relative to D_+ wave, compatible with $a_4(2040)$. Again: jump at 2 GeV in phase relative to P_+ wave. But: unlike between P_+ and G_+ no rapid phase jump between D_+ and G_+ waves at 2 GeV

Transition between different production processes?

Depicted: $\cos \theta_{\rm GJ}$ of the η' in the $\pi^-\eta'$ GJ restframe vs. $m(\pi\eta')$. Low masses show P and D wave interference, a_4 near $2 \,{\rm GeV/c^2}$, above that strong forward/backward peaking indicative of central production. Question: How does the forward/backward peaking at high masses affect the interpretation at low masses?

Comparison to $\eta\pi$

We also selected the $\eta\pi^-$ final state along the same lines. No PWA yet, for comparison, here's the same plot as on the previous slide, but for the $\pi\eta$:

Depicted: $\cos \theta_{\rm GJ}$ of the η in the $\pi^-\eta$ GJ restframe vs. $m(\pi\eta)$. Dominated by $a_2(1320)$, structures due to $a_4(2040)$ visible, again forward/backward peaking at high masses.

Conclusions

- ► COMPASS can confirm previous observations of a strong *P*-wave in $\eta'\pi$ and in addition finds confirming evidence for the $a_4(2040) \rightarrow \pi^- \eta'$
- ► the *t* distribution shows a decreasing slope with increasing $m(\eta'\pi^-)$ and the slope disagrees with the findings of E852
- resonant interpretation of the *P*-wave cannot be confirmed (at this point)

The road ahead:

- ▶ Primary Objective: clarify what happens in the transition between the regimes below and above $\approx 2 \, GeV/c^2$
- \blacktriangleright Secondary Objective: use this to gain clearer understanding of the nature of $\pi^-\eta'$ P-wave