Exotic spectroscopy and Quarkonia at LHCb

LIU Bo (On behalf of the LHCb collaboration) Tsinghua, Beijing & LAL, Orsay Hadron2011, Munich, 16th June, 2011

Outline

- Introduction
- Exotic measurement and prospects
 - X(3872) mass measurement;
 - XYZ prospects.
- Quarkonia measurements and prospects
 - $-\psi(2S)$ production;
 - χ_{c1} , χ_{c2} cross-section ratio.
- Summary

Introduction: LHCb detector

- Characteristics relevant for these analysis:
 - Proper time resolution: 30-50 fs;
 μ identification efficiency: ~ 95%;
 - Δp/p : 0.35 0.55 %.
- <u>37 pb⁻¹ of data collected at $\sqrt{s} = 7$ TeV in 2010.</u>

Exotic mesons

- In recent years, new exotic mesons have been observed by different experiments:
 X(3872), X(4140), Z(4430)...
- Many models, all with limited success;
 - Tetraquark: Tightly bound four quark.
 - Molecular state: Loosely bound mesons with a quark/color exchange (short distance)
 or π exchange (large distance).
 - Charmonium hybrids: States with a excited gluonic degree of freedom.

Molecular

 $c\overline{c}$ hybrid

X(3872) mass measurement

LHCb-CONF-2011-030

- Motivation
 - Measure X mass using $X \rightarrow J/\psi \pi^+ \pi^-$.
- Introduction
 - First observed by Belle, confirmed by CDF and Babar;
 - Quantum numbers constrained to be J^{PC}= 1⁺⁺ or 2⁻⁺.
- Analysis strategy
 - Using the inclusive production;
 - Based on L=34.8 pb⁻¹ of data;
 - $\psi(2S) \rightarrow J/\psi \pi^+ \pi^-$ as control channel.

Fit functions and calibration

- Fit functions:
 - Background(from same sign background shape) :

$$F_{bg}(M; m_r, c_0, c_1, c_2) = \frac{1}{a} (M - m_r)^{c_0} e^{-Mc_1 - M^2 c_2}$$

- Signal Voigt function (*convolution of BW with Gaussian*) :

$$V(M;\mu,\sigma,\Gamma) = \int_{-\infty}^{\infty} G(M-M';\sigma)L(M';\mu,\Gamma) \, dM'$$

Calibration

 $- J/\psi$ mass is constant over the whole data-taking.

Exotic spectroscopy and Quarkonia at LHCb

Fixed

Systematics

- Systematics under control:
 - $M_{\psi(2S)} = 3686.12 \pm 0.06 \text{ (stat) MeV/c}^2$ consistent with world average (3686.09 ± 0.04 MeV/c²);
 - The $\psi(2S)$ mass does not depend on any kinematic variables.

Source of uncertainty	Value $[MeV/c^2]$
Source of uncertainty	value [iviev/c]
Mass fitting:	
Signal model (natural width)	0.02
Background model	0.02
Momentum calibration:	
Average momentum scale	0.05
η dependence of momentum scale	0.03
Detector description:	
Energy loss correction	0.05
Detector alignment:	
Tracking stations (TT information)	0.05
Vertex detector (track slopes)	0.01
Quadratic sum	0.10

Comparison with other experiments

- CDF • X(3872) mass is compatible BaBar B⁺ with other measurements; BaBar B⁰ D0New average: ۲ Belle $3871.63 + 0.20 \text{ MeV/c}^2$ PDG Average 3871.56±0.22 LHCb preliminary indistinguishable from New average 3871.63 ± 0.20 the $D^{*0}\overline{D}^{0}$ threshold $M(D^0)+M(D^*)$ (3871.79 <u>+</u> 0.29 MeV/c²); 3867 3868 3869 3870 3871 3872 3873 3874 X(3872) mass [MeV/c²]
- A statistical error of 0.12 MeV/c² is expected with 500 pb⁻¹;
- A measurement of the X(3872) mass respect to the D^{*0D⁰} threshold to reduce systematics will be done too.

X(3872) prospects

- Production cross section measurement, for both of the prompt and b meson component;
 - Studies are underway with 2010 data.
- Determination of the quantum numbers using

B⁺ \rightarrow X(3872) (J/ $\psi \pi^{+} \pi^{-}$) K⁺; (CERN-LHCb-PUB-2010-003)

- ~1000 reconstructed X(3872) events are expected with 2 fb⁻¹.
- Study of the $M_{\pi\pi}$;
 - Understand the X(3872) decay mechanism and constrain models.
- X(3872) width;
 - Now (PDG): Γ < 2.3 MeV/c², CL = 90%

2011

data

Other exotic prospects

Events/0.01 GeV

1.9σ, Statistics?

- Z(4430) confirmation
 - Discovered by Belle in the ψ(2S) π system, Babar found no evidence.
 - Z(4430) yield at LHCb:
 - ~ 860 / 1 fb⁻¹ expected.
- (CERN-THESIS-2009-129) • X(4140) confirmation
 - Discovered by CDF in $B^+ \rightarrow K^+[J/\psi \phi]$;
 - Not seen at Belle with larger yield.
- Exotic bottomonium

 $- X \rightarrow (Y(nS) \rightarrow \mu^+\mu^-) \pi^+\pi^-.$

Many other exotic studies are on-going!

$\Psi(2S)$ production

LHCb-CONF-2011-026

- Motivation
 - Testing NRQCD CS and CO mechanisms.
- Introduction
 - No appreciable feed-down from higher mass states, directly compared with the theory;
 - Two decay modes:
 - $\Psi(2S) \rightarrow J/\psi \pi^+\pi^-$: larger BR, lower efficiency;
 - $\Psi(2S) \rightarrow \mu^+ \mu^-$: more statistics.
- Analysis strategy
 - $-\frac{d^2\sigma}{dp_T dy}(p_T, y) = \frac{N_{\psi(2S)}(p_T, y)}{\mathcal{L}_{int} \epsilon(p_T, y) \mathcal{B}(\psi(2S) \to e^+e^-) \Delta p_T \Delta y}$ $-\frac{d\sigma}{d\sigma} = \frac{N_{\psi(2S)}(p_T)}{N_{\psi(2S)}(p_T)}$
 - $-\frac{d\sigma}{dp_T}(p_T) = \frac{N_{\psi(2S)}(p_T)}{\mathcal{L}_{int} \ \epsilon(p_T) \ \mathcal{B}(\psi(2S) \rightarrow J/\psi\pi^+\pi^-) \ \mathcal{B}(J/\psi \rightarrow \mu^+\mu^-) \ \Delta p_T}$
 - Samples in bins of p_T and y.
 - Based on L~35 pb⁻¹ of data.

Extraction of $N(\psi(2S))$

Mass Spectra

- The number of $\psi(2S)$ extracted from mass fit.
- Efficiencies extracted from Monte Carlo, and corrected by comparing data and MC.

Efficiencies

Systematics and results

Only uncorrelated errors are shown

- **10**_⋛ (nhi ↑ **Dominant systematics** Prompt w(2S) NLO NRQCD $\frac{d\sigma}{dp_T}$ [nb/GeV/c] × B(ψ_{2S} Trigger efficiency; **J/**ψππ Tracking efficiency; - Polarization; – Luminosity. Results LHCb **Preliminary** Int. L=35pb⁻¹ $\sigma(\psi_{2s}; 0 < p_T \le 12 GeV/c, 2 < y < 4.5)$ s = 7 TeV Data $=1.88\pm0.02\pm0.31^{+0.25}_{-0.48}\mu b$ 12 p [GeV $\sigma(\psi_{2S}; 3 < p_T \le 16 GeV/c, 2 < y < 4.5)$ Y.-Q. Ma et al. PRL 106 042002 (2011) $= 0.62 \pm 0.04 \pm 0.12^{+0.07}_{-0.14} \mu b$ and private communication. - This measurement includes also non-prompt $\psi(2S)$: a more accurate
 - This measurement includes also non-prompt ψ(2S): a more accurate comparison will be carried out by separating prompt from non-prompt components.

$\chi_{c1} \chi_{c2}$ cross section ratio

3.8 GeV

45 Me

3S1

3 GeV

W(2S) or W'

414 MeV

LHCb-CONF-2011-020

- Motivation
 - Testing NRQCD CS and CO mechanisms.
- Introduction
 - 30% of J/ ψ from χ_c (1,2) \rightarrow J/ ψ γ : Tevatron;
 - χ_{c1} and χ_{c2} very close : two peaks impossible;
 - Very few χ_{c0} events expected.
- Analysis strategy

$$\frac{\sigma(\chi_{c2})}{\sigma(\chi_{c1})} = \frac{N_{\chi c2}}{N_{\chi c1}} \cdot \frac{\epsilon_{J/\psi}^{\chi c1} \epsilon_{\chi}^{\chi c1} \epsilon_{sel}^{\chi c1}}{\epsilon_{J/\psi}^{\chi c2} \epsilon_{\chi}^{\chi c2} \epsilon_{sel}^{\chi c2}} \cdot \frac{Br(\chi_{c1} \to J/\psi \gamma)}{Br(\chi_{c2} \to J/\psi \gamma)}$$

- Separate data in converted and not converted photons, and then combine the results (all photons reconstructed in the calorimeter);
- Final results in bins of J/ ψ p_T in the range [3, 15] GeV/c.
- Based on L=35.6 pb⁻¹ of data.

Decay rate

to J/ψν

Extraction of N(χ_{c1}) & N(χ_{c2})

• Mass spectra in Jpsi p_T [4, 5]GeV/c bin.

- The number of χ_c extracted from the mass fit.
- Efficiencies extracted from Monte Carlo.

Ratio of efficiencies

Systematics and results

- Systematics:
 - Fit;
 - Efficiencies;
 - MC statistics;
 - Br($\chi_c(1,2) \rightarrow J/\psi \gamma$);
 - Polarization.
- Results
 - Significant statistical improvement than previous hadron colliders;
 - Agreement with CS and CO in high p_T region.

plan to measure $\sigma(\chi_c \rightarrow J/\psi \gamma)/\sigma(J/\psi)$

Summary

- XYZ spectroscopy is an exciting field
 - X(3872) mass has been measured and more studies will be done;
 - On-going studies:
 - Confirmation of discoveries: Z(4430), X(4140), etc;
 - More exotic states in the J/ψππ, J/ψφ, J/ψJ/ψ spectra, or bottomonium states.
- Quarkonia production
 - $\psi(2S)$ and χ_c production are measured and more studies are on-going.

backup

Abstract

• The last ten years have seen a resurgence of interest in exotic spectroscopy driven by the discovery of the X(3872) in the J/ ψ $\pi\pi$ spectrum. Searches and studies of exotic onia form an important part of LHCbs physics program. We present results for the production of $\psi(2s)$ and $\chi_c(1,2)$ in the dimuon plus pions or photon channels, as well as the first | results for X(3872) production using the dataset collected in 2010, which corresponds to about 34 pb⁻¹. A measurement of the X(3872) mass in the J/psi pipi mode together with production properties | will be presented. The ψ 2s) production in the same decay channel and the χ c2 to xc1 cross section ratio will also be discussed, together with future prospects on these measurements at LHCb.

Systematics

Error source	μμ mode	J/ψ ππ mode	Comment
Trigger efficiency	0-18%	0-5%	bin dependent
GEC	2%	2%	correlated between bins
Muon ID	1.1%	1.1%	correlated between bins
Tracking efficiency	8%	16%	correlated between bins
μ track χ^2/ndf cut	1%	2%	correlated between bins
π PID cut	None	0.5%	correlated between bins
Eff. (unknown pol.)	1-12%	2-11%	bin dependent
$\psi(2S)$ vertex cut	0.8%	1.3%	correlated between bins
Branching ratio	2.2%*	0.4%	correlated between bins
Luminosity	10%	10%	correlated between bins

* dielectron

Systematics

Level	Quantity	Data stripping	Additional
		Requirement	Requirement
μ	Track	Track with muon	
		detector hits	
	p_T	$> 650 \mathrm{MeV}/c$	> 700 MeV/c
	Track quality $\chi^2/{ m ndf}$	< 5	< 4
J/ψ	$p_T^{J/\psi}$	$> 1.5 \mathrm{GeV}/c$	$> 3 \mathrm{GeV}/c$
	Mass window	$3040 - 3140 \mathrm{MeV}/c^2$	$3062 - 3120 \mathrm{MeV}/c^2$
	Vertex χ^2 /ndf	< 20	
	Vertex $p(\chi^2)$		> 0.5%
Photon	Confidence level		> 0.5
	p_T^{γ}		> 650 MeV/c
	$p^{\hat{\gamma}}$		> 5 GeV/c
χ_c	J/ψ pseudo-proper time t_z		< 0.1 ps
Event	Number of primary	> 0	
	vertices		

γ reconstruction

• π_0 mass fit: π_0 mass peak is symmetric in all cases.

 With new Calorimeter conditions and correction p₀ mass peak is symmetric in all cases