Electric dipole transitions of heavy quarkonium

Piotr Pietrulewicz

TU München, T30f in collaboration with N. Brambilla and A. Vairo

> Hadron 2011 14.06.2011

Outline

Basic formalism

- Effective Field Theory approach to heavy quarkonium
- Quarkonium states and transitions

3 E1 transitions

- Definition & non-relativistic limit
- Matching of the Lagrangian
- Wave-function corrections
- Results

Why should one study EM transitions?

- information about the quarkonium spectrum and the wave-functions
- significant contributions to the decay rate (at least for E1)
- new experimental data provided in the last and next few years (CLEO, BES, B factories)

Figure: K. Nakamura et al. (PDG), J. Phys. G 37 (2010)

What has been done?

 phenomenological approach: QCD motivated potential models Grotch et al., Phys. Rev. D 30 (1984)
 Eichten et al., Rev.Mod.Phys. 80 (2008)
 → Cornell potential, Buchmüller-Tye potential, ...
 BUT: strict model-independent derivation missing, systematic procedure for relativistic corrections desirable

What has been done?

 phenomenological approach: QCD motivated potential models Grotch et al., Phys. Rev. D 30 (1984)
 Eichten et al., Rev.Mod.Phys. 80 (2008)
 → Cornell potential, Buchmüller-Tye potential, ...
 BUT: strict model-independent derivation missing, systematic procedure for relativistic corrections desirable

```
• lattice QCD (quenched):
Dudek et al., Phys. Rev. D 73, 074507 (2006)
```

What has been done?

- phenomenological approach: QCD motivated potential models Grotch et al., Phys. Rev. D 30 (1984)
 Eichten et al., Rev.Mod.Phys. 80 (2008)
 → Cornell potential, Buchmüller-Tye potential, ...
 BUT: strict model-independent derivation missing, systematic procedure for relativistic corrections desirable
- lattice QCD (quenched): Dudek et al., Phys. Rev. D 73, 074507 (2006)
- EFT treatment of radiative decays: pNRQCD
 - \rightarrow M1 transitions

```
Brambilla et al., Phys. Rev. D 73 (2006)
```

 \rightarrow still missing: treatment of E1 transitions

Effective Field Theory approach to heavy quarkonium Quarkonium states and transitions

Basic formalism

EFT for heavy quarkonium Description of decay processes

Effective Field Theory approach to heavy quarkonium Quarkonium states and transitions

Scales in quarkonium

separation of scales in heavy quarkonium

$$m \gg p \sim mv \gg E \sim mv^2$$

where $v^2 \ll 1$ ($v^2 \approx 0.1$ for $b\bar{b}$, $v^2 \approx 0.3$ for $c\bar{c}$)

 \rightarrow systematic treatment of relativistic corrections in powers of v

 \rightarrow language of effective field theories appropriate

Scales in quarkonium

separation of scales in heavy quarkonium

$$m \gg p \sim mv \gg E \sim mv^2$$

where $\nu^2 \ll 1~(\nu^2 \approx 0.1$ for $b\bar{b},~\nu^2 \approx 0.3$ for $c\bar{c})$

- \rightarrow systematic treatment of relativistic corrections in powers of v
- \rightarrow language of effective field theories appropriate
- weakly coupled quarkonia ($E \gtrsim \Lambda_{QCD}$)
 - → perturbative treatment with Coulomb potential at leading order (valid for the ground states J/ψ , $\Upsilon(1S)$, η_c , η_b)

$$lpha_{s}(m) \sim v^{2}$$

 $lpha_{s}(mv) \sim v$
 $lpha_{s}(mv^{2}) \sim 1$

Effective Field Theory approach to heavy quarkonium Quarkonium states and transitions

Effective field theories for quarkonium

Figure: A. Vairo, arXiv 0902.3346 (2009)

NRQCD

- integrate out energy & momentum modes of order m from QCD
- Lagrangian

$$\mathcal{L} = \varphi^{\dagger} \left(i D_{0} + \frac{\mathbf{D}^{2}}{2m} + \frac{\mathbf{D}^{4}}{8m^{3}} + \dots \right) \varphi$$

$$+ g \varphi^{\dagger} \left(\frac{c_{F}}{2m} \boldsymbol{\sigma} \cdot \mathbf{B} + i \frac{c_{s}}{8m^{2}} \boldsymbol{\sigma} \cdot [\mathbf{D} \times, \mathbf{E}] + \dots \right) \varphi$$

$$+ e e_{Q} \varphi^{\dagger} \left(\frac{c_{F}^{em}}{2m} \boldsymbol{\sigma} \cdot \mathbf{B}^{em} + i \frac{c_{s}^{em}}{8m^{2}} \boldsymbol{\sigma} \cdot [\mathbf{D} \times, \mathbf{E}^{em}] + \dots \right) \varphi$$

$$+ c.c. + \mathcal{L}_{\text{light}} + \mathcal{L}_{\text{YM}}$$

coefficients by matching with QCD

pNRQCD (for weak coupling)

- integrate out
 - ightarrow quarks with energy & momentum \sim mv
 - \rightarrow gluons & photons of energy or momentum $\sim \textit{mv}$
- new degrees of freedom: $Q\bar{Q}$ color singlet and octet fields

pNRQCD (for weak coupling)

- integrate out
 - \rightarrow quarks with energy & momentum $\sim \textit{mv}$
 - \rightarrow gluons & photons of energy or momentum $\sim \textit{mv}$
- new degrees of freedom: QQ color singlet and octet fields
- Lagrangian

1

$$\begin{split} \mathcal{L}_{\text{pNRQCD}} &= \int d^3 r \, \text{Tr} \left\{ S^{\dagger} \left(i \partial_0 + \frac{\nabla^2}{4m} + \frac{\nabla_r^2}{m} - V_S \right) S \right. \\ &+ O^{\dagger} \left(i D_0 + \frac{\mathbf{D}^2}{4m} + \frac{\nabla_r^2}{m} - V_O \right) O \\ &+ g V_A (O^{\dagger} \mathbf{r} \cdot \mathbf{E}S + S^{\dagger} \mathbf{r} \cdot \mathbf{E}O) \\ &+ g V_B \frac{\{O^{\dagger}, \mathbf{r} \cdot \mathbf{E}\}}{2} O + \dots \right\} \\ &+ \mathcal{L}_{\gamma \text{pNRQCD}} + \mathcal{L}_{\text{light}} + \mathcal{L}_{\text{YM}} \end{split}$$

Effective Field Theory approach to heavy quarkonium Quarkonium states and transitions

pNRQCD (for weak coupling)

- now: Only relevant degrees of freedom present
- high energy dynamics encoded in Wilson coefficients (obtained by matching with NRQCD at energy mv)
- definite power counting of operators

٦

$$egin{array}{rcc} r &\sim 1/mv \ {f E}, {f B} &\sim (mv^2)^2 \ {f E}^{em}, {f B}^{em} &\sim k_\gamma^2 \ {f
abla} &\sim mv^2, \, k_\gamma \end{array}$$

Effective Field Theory approach to heavy quarkonium Quarkonium states and transitions

Quarkonium states and transitions

• quarkonium state (leading Fock space component):

$$|\mathcal{H}(\mathbf{P},\lambda)\rangle = \int d^{3}R \int d^{3}r \, e^{i\mathbf{P}\cdot\mathbf{R}} \mathrm{Tr}\left\{\phi_{\mathcal{H}(\lambda)}(\mathbf{r})\mathbf{S}^{\dagger}(\mathbf{r},\mathbf{R})|0
ight\}\,,$$

• at leading order:

$$H_{\rm S}^{(0)}\phi_{H(\lambda)}^{(0)} = \left(-\frac{\nabla_r^2}{m} + V_{\rm S}^{(0)}\right)\phi_{H(\lambda)}^{(0)} = E_{H(\lambda)}^{(0)}\phi_{H(\lambda)}^{(0)}$$

- at higher orders: wave-function corrections due to higher order potentials and singlet-octet transitions
- \rightarrow calculation of decay rates for $H \rightarrow H' \gamma$ in CM frame

Definition & non-relativistic limit Matching of the Lagrangian Wave-function corrections Results

E1 Transitions

Work in progress Formalism as for M1 transitions in N. Brambilla et al. (2006)

Definition & non-relativistic limit Matching of the Lagrangian Wave-function corrections Results

General properties

• definition: $\Delta S = 0$, $|\Delta L| = 1$

• change in parity, no change in C parity

Examples

$$\begin{array}{ll} 1^{3}P_{J} \rightarrow 1^{3}S_{1} & (\chi_{c} \rightarrow J/\psi\gamma \,,\, \chi_{b} \rightarrow \Upsilon(1S)\gamma) \\ 1^{1}P_{1} \rightarrow 1^{1}S_{0} & (h_{c} \rightarrow \eta_{c}\gamma \,,\, h_{b} \rightarrow \eta_{b}\gamma) \end{array}$$

• for the considered transitions: $k_{\gamma} \sim mv^2$

Definition & non-relativistic limit Matching of the Lagrangian Wave-function corrections Results

Nonrelativistic limit

leading order operator for E1 transitions

$$\mathcal{L}_{E1} = ee_{Q} \int d^{3}r \operatorname{Tr} \left\{ S^{\dagger}\mathbf{r} \cdot \mathbf{E}^{em}S \right\}$$

Nonrelativistic decay rate

$$\Gamma_{n^{3}P_{J=0,1,2} \to n'^{3}S_{1}\gamma} = \frac{4}{9} \alpha_{em} e_{Q}^{2} k_{\gamma}^{3} l_{3}^{2} (n1 \to n'0) \sim \frac{k_{\gamma}^{3}}{m^{2} v^{2}}$$
$$l_{3}(n1 \to n'0) = \int_{0}^{\infty} dr \, r^{3} R_{n'0}(r) R_{n1}(r)$$

- differences to M1 transitions:
 - \rightarrow leading order amplitude depends on the wave-function
 - \rightarrow enhancement of E1 transitions by factor $1/v^2$
- now: relativistic corrections of $\mathcal{O}(v^2)$

Definition & non-relativistic limit Matching of the Lagrangian Wave-function corrections Results

Relevant pNRQCD Lagrangian for decays of order k_{γ}^3/m^2

$$\begin{split} \mathcal{L}_{\gamma p \text{NRQCD}}^{E1} &= \text{ee}_{\mathsf{Q}} \int d^{3}r \operatorname{Tr} \left\{ V^{r \cdot E} S^{\dagger} \mathbf{r} \cdot \mathbf{E}^{em} S + V_{O}^{r \cdot E} O^{\dagger} \mathbf{r} \cdot \mathbf{E}^{em} O \right. \\ &+ \frac{1}{24} V^{(r \nabla)^{2} r \cdot E} S^{\dagger} \mathbf{r} \cdot (\mathbf{r} \nabla)^{2} \mathbf{E}^{em} S \\ &+ i \frac{1}{4m} V^{\nabla \cdot (r \times B)} S^{\dagger} \{ \nabla \cdot, \mathbf{r} \times \mathbf{B}^{em} \} S \\ &+ i \frac{1}{12m} V^{\nabla_{r} \cdot (r \times (r \nabla)B)} S^{\dagger} \{ \nabla_{r} \cdot, \mathbf{r} \times (\mathbf{r} \nabla) \mathbf{B}^{em} \} S \\ &+ \frac{1}{4m} V^{(r \nabla) \sigma \cdot B} [S^{\dagger}, \sigma] \cdot (\mathbf{r} \nabla) \mathbf{B}^{em} S \\ &+ \frac{1}{mr} V^{r \cdot E/r} S^{\dagger} \mathbf{r} \cdot \mathbf{E}^{em} S \\ &- i \frac{1}{4m^{2}} V^{\sigma \cdot (E \times \nabla_{r})} [S^{\dagger}, \sigma] \cdot (\mathbf{E}^{em} \times \nabla_{r}) S \Big\} \end{split}$$

Definition & non-relativistic lim Matching of the Lagrangian Wave-function corrections Results

Tree level matching

- project NRQCD Hamiltonian onto the subspace spanned by $\psi_{\alpha\beta}(\mathbf{x}_1, \mathbf{x}_2, t) \sim \varphi_{\alpha}(\mathbf{x}_1, t) \chi_{\beta}^{\dagger}(\mathbf{x}_2, t)$
- decompose $\psi_{\alpha\beta}(\mathbf{x}_1, \mathbf{x}_2, t)$ into singlet and octet field components
- multipole expand in $r \ll 1/E$

Tree level results

$$V_{A} = V^{r \cdot E} = V_{O}^{r \cdot E} = V^{(r \nabla)^{2} r \cdot E} = 1$$

$$V^{\nabla \cdot (r \times B)} = V^{(r \nabla) \nabla_{r} \cdot (r \times B)} = 1$$

$$V^{(r \nabla) \sigma \cdot B} = c_{F}^{em}$$

$$V^{\sigma \cdot (E \times \nabla_{r})} = c_{s}^{em}$$

$$V^{r \cdot E/r} = 0.$$

- matching of amplitudes order by order in 1/m
- required for the perturbative matching:
 - $\rightarrow \mathcal{O}(\alpha_s^2)$ corrections to $V^{r \cdot E}$
 - $\rightarrow \mathcal{O}(\alpha_s)$ corrections to $V^{r \cdot E/r}$
- But: exact relations for all relevant coefficients can be obtained
- crucial argument: factorization of amplitudes into electromagnetic and gluonic terms

Definition & non-relativistic limit Matching of the Lagrangian Wave-function corrections Results

General factorization argument

 $[\mathcal{O}^{\textit{em}},\mathcal{O}_1]=0 \; \text{OR} \; [\mathcal{O}^{\textit{em}},\mathcal{O}_2]=0$

 \Rightarrow the amplitude factorizes and gives no contribution to the matching of single operators

Matching of the electric dipole operator

Example: Exact matching of $V^{r \cdot E}$ possible (at order $1/m^0$) Trivial factorization: $[A_0, A_0^{em}] = 0$

 $\rightarrow V^{r \cdot E} = 1$ to all orders in α_s

Similar arguments for all relevant operators \Rightarrow tree level results = exact results (for E1)

Motivation	Definition & non-relativistic lin
Basic formalism	Matching of the Lagrangian
E1 transitions	Wave-function corrections

Wave-function corrections

• corrections due to higher order potentials to $\mathcal{O}(v^2)$

$$\begin{split} \delta V_r^{(0)}(r) &= -\frac{C_F(\alpha_{V_s}(r) - \alpha_s(r))}{r} \\ V_r^{(1)}(r) &= -\frac{C_F C_A \alpha_s^2(r)}{2mr^2} \\ V_r^{(2)}(r) &= \frac{\pi C_F \alpha_s(r)}{m^2} \delta^{(3)}(\mathbf{r}) \\ V_{\mathbf{p}^2}^{(2)}(r) &= -\frac{C_F \alpha_s(r)}{2m^2} \{\frac{1}{r}, \mathbf{p}^2\} \\ V_{\mathbf{L}^2}^{(2)}(r) &= \frac{C_F \alpha_s(r)}{2m^2 r^3} \mathbf{L}^2 \\ V_{\mathbf{s}^2}^{(2)}(r) &= \frac{3C_F \alpha_s(r)}{3m^2} \mathbf{S}^2 \delta^{(3)}(\mathbf{r}) \\ V_{\mathbf{Ls}}^{(2)}(r) &= \frac{3C_F \alpha_s(r)}{2m^2 r^3} \mathbf{L} \cdot \mathbf{S} \\ V_{\mathbf{s}_12}^{(2)}(\hat{\mathbf{r}}) &= \frac{C_F \alpha_s(r)}{4m^2 r^3} [3(\hat{\mathbf{r}} \cdot \sigma_1)(\hat{\mathbf{r}} \cdot \sigma_2) - \sigma_1 \cdot \sigma_2] \end{split}$$

Wave-function corrections

relativistic kinetic energy correction

$$\delta H_{\rm s}(r) = -\frac{{\bf p}^4}{4m^3}$$

- consider also running of α_s (as perturbation for fixed scale calculation)
- calculation with QM perturbation theory

higher Fock space components via singlet-octet transitions

$$\mathcal{L} = \int d^3 r \operatorname{Tr} \left\{ \mathsf{O}^\dagger \mathbf{r} \cdot g \mathsf{E} \mathsf{S} + \mathsf{S}^\dagger \mathbf{r} \cdot g \mathsf{E} \mathsf{O}
ight\}$$

- not present in potential model approach
- no cancellation as for M1 transitions
- non-perturbative input (chromoelectric field correlators)

$$\langle 0 | \mathbf{E}^{a}(\mathbf{R},t) \phi(t,0)^{\mathrm{adj}}_{ab} \mathbf{E}^{b}(\mathbf{R},0) | 0 \rangle$$

Definition & non-relativistic limi Matching of the Lagrangian Wave-function corrections Results

Color-octet effects

Definition & non-relativistic limit Matching of the Lagrangian Wave-function corrections Results

Strong coupling case

- strongly coupled quarkonia (p ≥ Λ_{QCD})
 → nonperturbative treatment with confining potential at leading order (valid for excited states χ_c, χ_b,...)
- nonperturbative potentials taken from lattice simulations
- no octet fields
- matching for the relevant operators as before
- for $\Lambda_{\text{QCD}} \sim \textit{mv}$ new operators become relevant

Motivation	Definition & non-relativistic lin
Basic formalism	Matching of the Lagrangian
E1 transitions	Wave-function corrections
	Results

Results

Final formula for $n^3 P_J \rightarrow n'^3 S_1$

$$\Gamma_{E1} = \Gamma_{E1}^{(0)} \left(1 + R - \frac{k_{\gamma}^2}{60} \frac{I_5}{I_3} - \frac{k_{\gamma}}{6m} + \frac{k_{\gamma}(c_F^{em} - 1)}{2m} \left[\frac{J(J+1)}{2} - 2 \right] \right)$$

$$I_N(n1 \to n'0) = \int_0^\infty dr \, r^N R_{n'0}(r) R_{n1}(r)$$

$$R \to \text{ wave function corrections}$$

Motivation	Definition & non-relativistic lin
Basic formalism	Matching of the Lagrangian
E1 transitions	Wave-function corrections
	Results

Results

Final formula for $n^3 P_J \rightarrow n'^3 S_1$

$$\Gamma_{E1} = \Gamma_{E1}^{(0)} \left(1 + R - \frac{k_{\gamma}^2}{60} \frac{I_5}{I_3} - \frac{k_{\gamma}}{6m} + \frac{k_{\gamma}(c_F^{em} - 1)}{2m} \left[\frac{J(J+1)}{2} - 2 \right] \right)$$
$$I_N(n1 \to n'0) = \int_0^\infty dr \, r^N R_{n'0}(r) R_{n1}(r)$$

 $R \rightarrow$ wave function corrections

- comparison with potential models (Grotch): equivalence to the given order, but:
 - \rightarrow range of validity ($E \gtrsim \Lambda_{QCD}$)
 - \rightarrow systematic inclusion of relativistic corrections (including $V_r^{(1)}$)
 - \rightarrow color-octet effects included for weak coupling

• similar for $n^1P_1 \rightarrow n^1S_0$ (without spin-dependent terms)

Definition & non-relativistic limit Matching of the Lagrangian Wave-function corrections Results

Conclusion and Outlook

• Summary:

EFT treatment for E1 transitions up to $\mathcal{O}(v^2)$ -corrections

- \rightarrow relevant Lagrangian: exact matching for all operators
- \rightarrow systematic calculation of relativistic corrections

Definition & non-relativistic limit Matching of the Lagrangian Wave-function corrections Results

Conclusion and Outlook

• Summary:

EFT treatment for E1 transitions up to $\mathcal{O}(v^2)$ -corrections

 \rightarrow relevant Lagrangian: exact matching for all operators

 \rightarrow systematic calculation of relativistic corrections

Outlook:

 \rightarrow evaluation of octet effects

 \rightarrow numerical calculation with perturbative potentials for short and nonperturbative ones for long distances

 \rightarrow full strong coupling analysis for higher excited states

Motivation Basic formalism E1 transitions	Definition & non-relativistic limit Matching of the Lagrangian Wave-function corrections Results
---	---

Thank you for your attention!

Wave-functions

S-wave states

$$\phi_{n^{1}S_{0}}^{(0)}(\mathbf{r}) = \sqrt{\frac{1}{8\pi}} R_{n0}(r)$$

$$\phi_{n^{3}S_{1}(\lambda)}^{(0)}(\mathbf{r}) = \sqrt{\frac{1}{8\pi}} R_{n0}(r) \boldsymbol{\sigma} \cdot \hat{\mathbf{e}}_{n^{3}S_{1}}(\lambda)$$

P-wave states

$$\begin{split} \phi_{n^{1}P_{1}(\lambda)}^{(0)}(\mathbf{r}) &= \sqrt{\frac{3}{8\pi}} R_{n1}(r) \,\hat{\mathbf{e}}_{n^{1}P_{1}}(\lambda) \cdot \hat{\mathbf{r}} \\ \phi_{n^{3}P_{0}}^{(0)}(\mathbf{r}) &= \sqrt{\frac{1}{8\pi}} R_{n1}(r) \sigma \cdot \hat{\mathbf{r}} \\ \phi_{n^{3}P_{1}(\lambda)}^{(0)}(\mathbf{r}) &= \sqrt{\frac{3}{16\pi}} R_{n1}(r) \sigma \cdot (\mathbf{r} \times \hat{\mathbf{e}}_{n^{3}P_{1}}(\lambda)) \\ \phi_{n^{3}P_{2}(\lambda)}^{(0)}(\mathbf{r}) &= \sqrt{\frac{3}{8\pi}} R_{n1}(r) \sigma^{j} h_{n^{3}P_{2}}^{jj}(\lambda) \mathbf{\hat{r}}^{j}. \end{split}$$

General non-relativistic formula

$$\Gamma_{n^{2s+1}L_{J} \to n'^{2s+1}L'_{J'}\gamma}^{(0)} = \frac{4}{3} \alpha_{em} e_{Q}^{2} (2J'+1) S^{E1} k_{\gamma}^{3} l_{3}^{2} (nl \to n'l')$$
$$S^{E1} = \max(l,l') \left\{ \begin{array}{cc} J & 1 & J' \\ l' & s & l \end{array} \right\}^{2}$$
$$l_{3} (nl \to n'l') = \int_{0}^{\infty} dr \, r^{3} R_{n'l'}(r) R_{n1}(r)$$

• Loop effects with electromagnetic coupling to *u*, *d* and *s* cancel

$$q_u+q_d+q_s=0$$

charm quark effects for bottomonium
 → leading order diagram highly suppressed

→ furthermore: decoupling at typical momentum scale Brambilla, N. et al., Phys.Rev. D65 (2002), 034001

Lineshape of the *h*_b

Decay $h_b \rightarrow \eta_b \gamma \rightarrow X \gamma$, resonance in the photon spectrum observable

Lineshape from pNRQCD calculation:

$$\frac{d\Gamma_{h_b}}{dE_{\gamma}} = \frac{4\alpha_{em}}{81\pi} I_3^2 (11 \rightarrow 10) E_{\gamma}^3 \frac{\Gamma_{\eta_b}/2}{(E_{\gamma}^{\text{peak}} - E_{\gamma})^2 + \Gamma_{\eta_b}^2/4}$$

with $E_{\gamma}^{\text{peak}} \approx E_{h_b} - E_{\eta_b}$ \rightarrow modified Breit-Wigner curve

