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Preface

In the chiral limit mu = md = ms = 0 the QCD Lagrangian is
invariant under UL(3) ⊗ UR(3) symmetry at the classical level.

UA(1) ≡ UL−R : violated at the quantum level, i.e. UA(1) anomaly,
which is also responsible for the massive η1.

UV (1) ≡ UL+R : conserved baryon number.

SUL(3) ⊗ SUR(3) → SUV (3) is spontaneously broken. Goldstone
bosons appear π, K , η8: SU(3) χPT [Gasser, Leutwyler, NPB’85].

In large NC limit, UA(1) anomaly disappears and the η1 mass
vanishes: M2

η1
∼ O(1/NC ). So η1 together with π, K , η8

constitute the nonet of pesudo Goldstone bosons.
[t’Hooft, NPB’74] [Witten, NPB’79] [Coleman & Witten, PRL’80]
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U(3) χPT takes π, K , η8 and η1 as its dynamical degrees of
freedom and employs the triple expansion scheme: momentum,
quark masses and 1/NC , i.e. δ ∼ p2 ∼ mq ∼ 1/NC .

I Set up in: [ Witten, PRL’80] [ Di Vecchia & Veneziano,’80 ]

[ Rosenzweig, Schechter & Trahern, ’80 ]

I Chiral Lagrangian to O(p4) completed in:
[Herrera-Siklody, Latorre, Pascual, Taron, NPB’97 ] . See also

[Kaiser, Leutwyler, EPJC’00 ] .

I Applications
Light quark masses: [Leutwyler, PLB’96 ]

η − η′ mixing: [Herrera-Siklody, Latorre, Pascual, Taron, PLB’98]

[Leutwyler, NPB(Proc.Suppl)’98 ]

η′ → ηππ decay: [Escribano,Masjuan, Sanz-Cillero, JHEP’11]
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I Our current work offers the complete one-loop amplitudes of
the meson-meson scattering within U(3) χPT.

And then we study the properties of various resonances, such
as their pole positions, residues and NC behaviour, by
unitarizing the U(3) χPT amplitudes.
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There are variant methods to treat η′ in the market

I Matter filed: M2
η′ ∼ O(1) and Infrared Regularization method

used to handle the loops. [Beisert, Borasoy, NPA’02, PRD’03]

I Non-relativistic field
[Kubis, Schneider, EPJC’09]

Zhi-Hui Guo UM&HEBNU

Resonances and their NC fates in U(3) chiral perturbation theory



Outline Preface Analytical calculation Phenomenological discussion Conclusions

Relevant Chiral Lagrangian
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L(δ0) =
F 2

4
⟨uµuµ⟩ +

F 2

4
⟨χ+⟩ +

F 2

3
M2

0 ln2 det u , (1)

where

u = e
i Φ√

2F , U = u2 ,

uµ = iu†DµUu† = u†
µ , χ± = u†χu† ± uχ†u ,

Φ =


√

3π0+η8+
√

2η1√
6

π+ K+

π− −
√

3π0+η8+
√

2η1√
6

K 0

K− K̄ 0 −2η8+
√

2η1√
6

 . (2)
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Li s correspond to the higher order local operators.
At O(δ) one has O(NCp4) and O(N0

Cp2) operators:

L(δ) = L2⟨uµuνu
µuν⟩ + (2L2 + L3)⟨uµuµuνu

ν⟩
+ L5⟨uµuµχ+⟩ + L8/2⟨χ+χ+ + χ−χ−⟩ + . . .

+ F 2Λ1/12DµψDµψ − i F 2Λ2/12 ψ⟨U†χ− χ†U⟩ + . . .

At O(δ2) (same order as the one-loop contribution), one then has
O(N−2

C p0), O(N−1
C p2), O(N0

Cp4) and O(NCp6) operators:

L(δ2) = ṽ
(4)
0 X 4 + ṽ

(2)
1 X 2⟨uµuµ⟩ + L4⟨uµuµ⟩⟨χ+⟩

+C1⟨uρu
ρhµνh

µν⟩ + . . . ,

with ψ = −i ln det U, X = log det(U) and hµν = ∇µuν + ∇νuµ.
[Herrera-Siklody, Latorre, Pascual, Taron, NPB’97 ]

[Bijnens, Colangelo, Ecker, JHEP’99]
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Alternatively, one could use resonances to estimate the higher
order low energy constants:

LS = cd⟨ S8uµuµ ⟩ + cm⟨S8χ+ ⟩
+c̃dS1⟨ uµuµ ⟩ + c̃mS1⟨χ+ ⟩ + ... (3)

LV =
iGV

2
√

2
⟨Vµν [uµ, uν ]⟩ + ... , (4)

[Ecker, Gasser, Pich, de Rafael, NPB’89]

In the current discussion, we assume the resonance saturation and
exploit the above resonance operators to calculate the
meson-meson scattering.

The monomials proportional to Λ1 and Λ2 are not generated
through resonance exchange. No double counting.
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Perturbative calculation of the scattering amplitudes
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S

P

Figure: Relevant Feynman diagrams for mass, wave function
renormalization and η − η′ mixing

The leading order η-η′ mixing has to be solved exactly

Figure: The dot denotes the mixing of η8 and η1 at leading order, which
is proportional to m2

K − m2
π.
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Scattering amplitudes consist of

+

+ + crossed

(a)

+

(b)

+ crossed

(c)

S

(d)

S , V

(e)
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S

Figure: Relevant Feynman diagrams for the pseudo Goldstone decay
constant. The wiggly line corresponds to the axial-vector external source.

We expressed all the amplitudes in terms of physical masses and
Fπ, i.e. reshuffling the leading order contributions.
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Partial wave amplitude and its unitarization
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Partial wave projection:

T I
J (s) =

1

2(
√

2)N

∫ 1

−1
dx PJ(x) T I [s, t(x), u(x)] , (5)

where PJ(x) denote the Legendre polynomials and (
√

2)N is a
symmetry factor to account for the identical particles, such as
ππ, ηη, η′η′.
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The essential of the N/D method is to construct the unitarized
TJ : [Chew, Mandelstam, PR’60]

TJ =
N

D
, (6)

where

ImD = N ImTJ = −ρN , for s > 4m2 ,

ImD = 0 , for s < 4m2 ,

ImN = D ImTJ , for s < 0 ,

ImN = 0 , for s > 0 , (7)

due to the fact that the unitarity condition for the elastic channel is

ImT−1
J = −ρ , s > 4m2 (8)

where ρ =
√

1 − 4m2/s/16π .
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One can now write the dispersion relations for N and D:

D(s) = ãSL(s0) −
s − s0
π

∫ ∞

4m2

N(s ′) ρ(s ′)

(s ′ − s)(s ′ − s0)
ds ′ + ... , (9)

N(s) =

∫ 0

−∞

D(s ′) ImTJ(s
′)

s ′ − s
ds ′ . (10)

It can be greatly simplified if one imposes the perturbative solution
for N(s) instead of the left hand discontinuity [Oller, Oset, PRD’99],

TJ(s) =
N(s)

1 + g(s) N(s)
, (11)

where

g(s) =
aSL(s0)

16π2
− s − s0

π

∫ ∞

4m2

ρ(s ′)

(s ′ − s)(s ′ − s0)
ds ′ . (12)
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Matching the TJ(s) = N(s)/
[
1 + g(s) N(s)

]
with

TJ(s)|χPT = T2 + TResonance + TLoop up to one-loop:

N(s) = T2 + TResonance + TLoop + T2 g(s) T2 . (13)

The generalization to the inelastic case is straightforward:

TJ(s) = N(s) · [1 + g(s) · N(s)]−1 . (14)

This formalism has been explored in many areas. See in this
conference the talks already done by Alarcon, F.K.Guo, Magalaes,
Molina, Oset.
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For IJ = 00 case, we have 5 channels: ππ, KK̄ , ηη, ηη′ and η′η′

N0
0 (s) =


Nππ→ππ Nππ→KK̄ Nππ→ηη Nππ→ηη′ Nππ→η′η′

Nππ→KK̄ NKK̄→KK̄ NKK̄→ηη NKK̄→ηη′ NKK̄→η′η′

Nππ→ηη NKK̄→ηη Nηη→ηη Nηη→ηη′ Nηη→η′η′

Nππ→ηη′ NKK̄→ηη′ Nηη→ηη′ Nηη′→ηη′ Nηη′→η′η′

Nππ→η′η′ NKK̄η′η′ Nηη→η′η′ Nηη′→η′η′ Nη′η′→η′η′



g0
0 (s) =


gππ 0 0 0 0
0 gKK̄ 0 0 0
0 0 gηη 0 0
0 0 0 gηη′ 0
0 0 0 0 gη′η′

 .
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For IJ = 1 0, we have 3 channels: πη, KK̄ and πη′

N(s)10 =

 Nπη→πη Nπη→KK̄ Nπη→πη′

Nπη→KK̄ NKK̄→KK̄ NKK̄→πη′

Nπη→πη′ NKK̄→πη′ Nπη′→πη′

 ,

g(s)10 =

 gπη 0 0
0 gKK̄ 0
0 0 gπη′

 .

Zhi-Hui Guo UM&HEBNU

Resonances and their NC fates in U(3) chiral perturbation theory



Outline Preface Analytical calculation Phenomenological discussion Conclusions

For IJ = 1/2 0, there are three channels: Kπ, Kη and Kη′

N(s)
1/2
0 =

 NKπ→Kπ NKπ→Kη NKπ→Kη′

NKπ→Kη NKη→Kη NKη→Kη′

NKπ→Kη′ NKη→Kη′ NKη′→Kη′

 ,

g(s)
1/2
0 =

 gKπ 0 0
0 gKη 0
0 0 gKη′

 .

The same expressions hold for IJ = 1/2 1.
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For IJ = 1 1 there are 2 channels

N1
1 (s) =

(
Nππ→ππ Nππ→KK̄

Nππ→KK̄ NKK̄→KK̄

)
,

g1
1 (s) =

(
gππ 0
0 gKK̄

)
.

For IJ = 3/2 0, it is an elastic channel

N(s)
3/2
0 = NKπ→Kπ ,

g(s)
3/2
0 = gKπ .

For IJ = 2 0, it is

N(s)20 = Nππ→ππ ,

g(s)20 = gππ .
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Phenomenological discussion
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We have 16 free parameters with 348 data and the fitted results are

cd = (15.6+4.2
−3.4) MeV , cm = (31.5+19.5

−22.5) MeV ,

c̃d = (8.7+2.5
−1.7) MeV , c̃m = (15.8+3.3

−3.0) MeV ,

MS8 = (1370+132
−57 ) MeV , MS1 = (1063+53

−31) MeV ,

Mρ = (801.0+7.0
−7.5) MeV , MK∗ = (909.0+7.5

−6.9) MeV ,

GV = (61.9+1.9
−1.9) MeV , a1 0 ,πη

SL = 2.0+3.1
−3.4 ,

a00
SL = (−1.15+0.07

−0.09) , a
1
2

0

SL = (−0.96+0.10
−0.16) ,

N = (0.6+0.3
−0.3) MeV−2 , c = (1.0+0.6

−0.4) ,

M0 = (954+102
−95 ) MeV , Λ2 = (−0.6+0.5

−0.4) ,

with χ2/d.o.f = 714/(348 − 16) ≃ 2.15.
nσ = ∆χ2/

√
2χ2 ≤ 2 to get the errors, nσ = 2 Etkin et al. PRD’82
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Poles from the unitarized amplitudes

I σ or f0(600) , IJ = 0 0

Mσ = 440+3
−3 MeV , Γσ/2 = 258+5

−7 MeV ,

|gσππ| = 3.02+0.03
−0.03 GeV ,

|gσKK̄ |/|gσππ| = 0.51+0.03
−0.02 , |gσηη|/|gσππ| = 0.06+0.03

−0.01

|gσηη′ |/|gσππ| = 0.16+0.03
−0.02 , |gση′η′ |/|gσππ| = 0.05+0.03

−0.03

Other approaches:
Mσ = 470 ± 50 , Γσ/2 = 285 ± 25 Zhou, et al. JHEP’05

Mσ = 441+16
−8 , Γσ/2 = 272+9

−13 Caprini et al. PRL’06

Mσ = 484 ± 17 , Γσ/2 = 255 ± 10 Garćıa-Mart́ın et al. PRD’07

Mσ = 456 ± 6 , Γσ/2 = 241 ± 17 Albaladejo, Oller PRL’08

Zhi-Hui Guo UM&HEBNU

Resonances and their NC fates in U(3) chiral perturbation theory



Outline Preface Analytical calculation Phenomenological discussion Conclusions

I f0(980) , IJ = 00

Mf0 = 981+9
−7 MeV , Γf0/2 = 22+5

−7 MeV ,

|gf0ππ| = 1.7+0.3
−0.3 GeV

|gf0KK̄ |/|gf0ππ| = 2.3+0.3
−0.2 , |gf0ηη|/|gf0ππ| = 1.6+0.3

−0.3

|gf0ηη′ |/|gf0ππ| = 1.2+0.1
−0.2 , |gf0η′η′ |/|gf0ππ| = 0.7+0.4

−0.5

I f0(1370) , IJ = 00

Mf0 = 1401+58
−37 MeV , Γf0/2 = 106+36

−23 MeV ,

|gf0ππ| = 2.4+0.2
−0.1 GeV

|gf0KK̄ |/|gf0ππ| = 0.62+0.04
−0.05 , |gf0ηη|/|gf0ππ| = 0.9+0.1

−0.1

|gf0ηη′ |/|gf0ππ| = 1.7+0.4
−0.6 , |gf0η′η′ |/|gf0ππ| = 1.1+0.4

−0.5

Both resonances have strong couplings to states with η, η′

Zhi-Hui Guo UM&HEBNU
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I κ or K ∗
0 (800) , IJ = 1/2 0

Mκ = 665+9
−9 MeV , Γκ/2 = 268+21

−6 MeV ,

|gκKπ| = 4.2+0.2
−0.2 GeV

|gκKη|/|gκKπ| = 0.7+0.1
−0.1 , |gκKη′ |/|gκKπ| = 0.50+0.1

−0.1

Other approaches:√
s = (594 ± 79 − i 362 ± 166) MeV Zheng, et al. NPA’04√
s = (658 ± 13 − i 278 ± 12) MeV Descotes, Moussallam EPJC’06

I K ∗
0 (1430) , IJ = 1/2 0

MK∗
0

= 1428+56
−23 MeV , ΓK∗

0
/2 = 87+53

−28 MeV ,

|gK∗
0 Kπ| = 3.3+0.5

−0.4 GeV

|gK∗
0 Kη|/|gK∗

0 Kπ| = 0.54+0.07
−0.02 , |gK∗

0 Kη′ |/|gK∗
0 Kπ| = 1.2+0.2

−0.3
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I a0(980) , IJ = 1 0

Ma0 = 1012+25
−7 MeV , Γa0/2 = 16+50

−13 MeV ,

|ga0πη| = 2.5+1.3
−0.8 GeV

|ga0KK̄ |/|ga0πη| = 1.9+0.2
−0.3 , |ga0πη′ |/|ga0πη| = 0.01+0.03

−0.01

I a0(1450) , IJ = 1 0

Ma0 = 1368+68
−68 MeV , Γa0/2 = 71+48

−23 MeV ,

|ga0πη| = 2.3+0.4
−0.5 GeV

|ga0KK̄ |/|ga0πη| = 0.6+0.7
−0.2 , |ga0πη′ |/|ga0πη| = 0.6+0.2

−0.1

Zhi-Hui Guo UM&HEBNU
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I ρ(770) , IJ = 1 1

Mρ = 762+4
−4 MeV , Γρ/2 = 72+2

−2 MeV ,

|gρ ππ| = 2.48+0.03
−0.05 GeV , |gρKK̄ |/|gρππ| = 0.64+0.01

−0.01

I K ∗(892) , IJ = 1/2 1

MK∗ = 891+3
−4 MeV , ΓK∗/2 = 25+2

−1 MeV ,

|gK∗ πK | = 1.86+0.05
−0.05 GeV

|gK∗Kη|/|gK∗Kπ| = 0.91+0.03
−0.02 , |gK∗Kη′ |/|gK∗Kπ| = 0.45+0.08

−0.08

I ϕ(1020) , IJ = 0 1

Mϕ = 1019.5+0.3
−0.3 MeV , Γϕ/2 = 2.00+0.04

−0.08 MeV ,

|gϕ KK̄ | = 0.85+0.01
−0.02 GeV

Zhi-Hui Guo UM&HEBNU
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Running of pole positions with NC

For the first time the NC dependence of the pseudo-Goldstone
masses and mixing angle are taken into account for determining
resonance properties with increasing NC .

In SU(3) χPT, there is one mixing ingredient for the large NC

limit: the singlet η1.
The leading order behaviours of the parameters at large NC are

M2
0 ∼ Λ2 ∼ 1/Nc

cd ∼ cm ∼ c̃d ∼ c̃m ∼ GV ∼ F ∼
√

Nc

M2
V ∼ M2

S8
∼ M2

S1
∼ B ∼ aSL ∼ O(N0

c )

with m2
π = 2Bmu ,m

2
K = B(mu + ms).

[Ecker, et al., NPB’89] [Kaiser,Leutwyler, EPJC’00]
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The next-to-leading order of 1/NC running can be read out from
our prediction for Fπ

Fπ = F

{
1 +

1

16π2F 2
π

[
A0(m

2
π) +

1

2
A0(m

2
K )

]
+

[
4c̃d c̃m(m2

π + 2m2
K )

F 2
πM2

S1

− 8cd cm (m2
K − m2

π)

3F 2
πM2

S8

]}
.

In addition we also take the following assumptions for the
next-to-leading order of 1/NC pieces for the other resonance
couplings

cd(NC ) = cd(NC = 3)
Fπ(NC )

Fπ(NC = 3)
,

similar expressions also apply for cm , c̃d , c̃m ,GV due to the high
energy constraint from QCD

cd = cm =
√

3c̃d =
√

3c̃m =
Fπ

2
, GV =

Fπ√
2

or
Fπ√

3
.

[Ecker, et al., PLB’89] [Jamin, et al., NPB’00] [Guo, et al., JHEP’07]
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Pseudoscalar masses with varying NC
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Ideal Mixing (OZI rule is exact): leading order mixing angle
θ = −54.7o
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Two approximations of our full results are studied for the
resonance poles

I vector reduced :

1

M2
V − t

→ 1

M2
V

,

We only includes the NLO local terms in χPT in this scheme.

I Mimic SU(3) : Mixing is set to zero and η1 is kept in the
loops. π,K , η8, η1 masses are frozen. Differences highlight
the role of η and η′.
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I The results from one-loop inverse amplitude (IAM) are quite similar
with the vector reduced case.
[Pelaez, ’04][Sun, et al. ’07][Ruiz-Arriolla, Nieves, ’09]

I Two-loop(SU(2)) IAM shows a quite different picture: σ moves to a
pole with zero width at 1 GeV. [Pelaez, Rios, ’06][Sun, et al. ’07]
We also obtain such a pole but it comes from the bare scalar singlet
MS1 ≃ 1 GeV (At NC = 3 it contributes to the f0(980).)
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A short summary of our finding for σ:

I The one-loop IAM study reflects a specific approximation of
our full result: vector reduced. Whereas the scalar reduced
approximation perfectly agrees with the full result.

I The mimic SU(3) approximation turns out to be quite similar
to the full result of the σ trajectory, indicating σ is insensitive
to η and η′ even for large NC .

I The possible source of the disagreement of our result and the
two-loop IAM is the higher order local terms, because much
more resonance operators will be involved to produce the
O(p6) LECs.
[Cirigliano, et al., NPB’06]
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Conclusions

I A complete one-loop calculation of all meson-meson
scattering amplitudes within U(3) χPT has been worked out
for the first time in literature.

I A variant N/D method has been employed to resum the
s-channel loops. Various resonance poles in the complex plane
and their residues have been calculated.

I NC dependence of the resonance pole positions and the
residuals, are studied, also for the first time in literature, by
taking into account the NC running of the pseudo-Goldstone
masses and the η − η′ mixing angle.

Danke !
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η̄ = cos θ η8 − sin θ η1 ,

η̄′ = sin θ η8 + cos θ η1 ,

m2
η =

M2
0

2
+ m2

K −

√
M4

0 − 4M2
0∆2

3 + 4∆2

2
,

m2
η′ =

M2
0

2
+ m2

K +

√
M4

0 − 4M2
0∆2

3 + 4∆2

2
,

sin θ = −1/

√
1 +

(
3M2

0 − 2∆2 +
√

9M4
0 − 12M2

0∆2 + 36∆4
)2
/32∆4

∆2 = m2
K − m2

π , sin θ → 0 for ∆2 → 0, i.e. in SU(3) limit.
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The NLO η̄-η̄′ mixing can be treated perturbatively

L =
1 + δη

2
∂µη∂

µη +
1 + δη′

2
∂µη

′∂µη′ + δk ∂µη∂
µη′

−
m2

η + δm2
η

2
η η −

m2
η′ + δm2

η′

2
η′η′ − δm2 η η′ .

(
η
η′

)
=

(
cos θδ − sin θδ

sin θδ cos θδ

)(
1 +

δη

2
δk
2

δk
2 1 +

δη′
2

)(
η
η′

)
.
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Observables fitted:

I I = J = 0: δ00
ππ→ππ, |S00

ππ→ππ|, 1
2 |S

00
ππ→KK̄

|, δ00
ππ→KK̄

I I = J = 1: δ11
ππ→ππ

I I = 1/2 J = 0 , 1: δ
1
2
0

πK→πK , δ
1
2
1

πK→πK

I I = 2 J = 0 : δ20
ππ→ππ

I I = 3/2 J = 0 : δ
3
2
0

πK→πK

I I = 1 J = 0 : πη event distribution around a0(980)

dNπη

dEπη
= qπη N

∣∣TKK̄→πη(s) + c Tπη→πη(s)
∣∣2 .

I mη, mη′
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Subtraction Constants: The number of free ones can be reduced
enormously by applying Isospin and U(3) symmetry.
Jido,Oller,Oset,Ramos,Meißner, NPA’03

• Isospin Symmetry requires that all the aIJ
SL are the same

separately for ππ, KK̄ and Kπ

• U(3) Symmetry requires that all aIJ
SL are the same for a given J

a00
SL = a00 , ππ

SL = a00 , KK̄
SL = a00 , ηη

SL = a00 , ηη′

SL = a00 , η′η′

SL = a20 , ππ
SL

= a1 0 , πη′

SL = a1 0 , KK̄
SL ,

a
1
2

0

SL = a
1
2

0 , Kπ

SL = a
1
2

0 , Kη

SL = a
1
2

0 , Kη′

SL = a
3
2

0 , Kπ

SL

a1 0 , πη
SL

All the subtraction constants in the vector channels are set equal
to a00

SL (play a little role).
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We have 16 free parameters with 348 data and the fitted results are

cd = (15.6+4.2
−3.4) MeV , cm = (31.5+19.5

−22.5) MeV ,

c̃d = (8.7+2.5
−1.7) MeV , c̃m = (15.8+3.3

−3.0) MeV ,

MS8 = (1370+132
−57 ) MeV , MS1 = (1063+53

−31) MeV ,

Mρ = (801.0+7.0
−7.5) MeV , MK∗ = (909.0+7.5

−6.9) MeV ,

GV = (61.9+1.9
−1.9) MeV , a1 0 ,πη

SL = 2.0+3.1
−3.4 ,

a00
SL = (−1.15+0.07

−0.09) , a
1
2

0

SL = (−0.96+0.10
−0.16) ,

N = (0.6+0.3
−0.3) MeV−2 , c = (1.0+0.6

−0.4) ,

M0 = (954+102
−95 ) MeV , Λ2 = (−0.6+0.5

−0.4) ,

with χ2/d.o.f = 714/(348 − 16) ≃ 2.15.
nσ = ∆χ2/

√
2χ2 ≤ 2 to get the errors, nσ = 2 Etkin et al. PRD’82
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Another strategy to perform the fit

The number of parameters can be reduced by imposing the
following constraints [Ecker, Gasser, Pich, de Rafael, NPB’88]

c̃d =
cd√
3
, c̃m =

cm√
3
, (15)

and some of the parameters can be taken from other works:
MS1 = 1020 MeV, MS8 = 1390 MeV [Oller, Oset, PRD’99];
M0 = 850 MeV from [Feldmann, IJMPLA’00];
GV = 60.0 MeV, average value from
[Ecker, Gasser, Pich, de Rafael, PLB’89]

[Guo, Sanz-Cillero, Zheng, JHEP’07]

[Guo, Sanz-Cillero, PRD’09].
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We have 10 free parameters with 348 data now and the fitted
results are

cd = 17.4MeV , cm = 28.1MeV ,

Mρ = 800.4MeV , MK∗ = 910.0MeV ,

a00
SL = −1.14 , a

1
2

0

SL = −0.89 ,

Λ2 = −0.22 , a1 0 ,πη
SL = 2.0 ,

N = 0.55MeV−2 , c = 0.84 ,

with χ2/d.o.f = 842/(348 − 10) ≃ 2.5.
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