Resonances and their N_{C} fates in $U(3)$ chiral perturbation theory

Zhi-Hui Guo

Universidad de Murcia \& Hebei Normal University
Hadron 2011, 13 June -17 June 2011, Munich, Germany
in collaboration with Jose Oller, based on arXiv:1104.2849[hep-ph]

A work dedicated to Joaquim Prades

Outline

1. Preface
2. Analytical calculation

- Chiral Lagrangian \& perturbative amplitudes
- Resummation of s-channel loops : a variant N/D method

3. Phenomenological discussion

- Fit quality
- Poles in the complex energy plane \& their residues
- N_{C} trajectories

4. Conclusions

Preface

In the chiral limit $m_{u}=m_{d}=m_{s}=0$ the QCD Lagrangian is invariant under $U_{L}(3) \otimes U_{R}(3)$ symmetry at the classical level.
$U_{A}(1) \equiv U_{L-R}$: violated at the quantum level, i.e. $U_{A}(1)$ anomaly, which is also responsible for the massive η_{1}.
$U_{V}(1) \equiv U_{L+R}$: conserved baryon number.
$S U_{L}(3) \otimes S U_{R}(3) \rightarrow S U_{V}(3)$ is spontaneously broken. Goldstone bosons appear $\pi, K, \eta_{8}: S U(3) \chi \mathrm{PT}$ [Gasser, Leutwyler, NPB'85].

In large N_{C} limit, $U_{A}(1)$ anomaly disappears and the η_{1} mass
vanishes: $M_{\eta_{1}}^{2} \sim \mathcal{O}\left(1 / N_{C}\right)$. So η_{1} together with π, K, η_{8}
constitute the nonet of pesudo Goldstone bosons.
[t'Hooft, NPB'74] [Witten, NPB'79] [Coleman \& Witten, PRL'80]
$U(3) \chi$ PT takes π, K, η_{8} and η_{1} as its dynamical degrees of freedom and employs the triple expansion scheme: momentum, quark masses and $1 / N_{C}$, i.e. $\delta \sim p^{2} \sim m_{q} \sim 1 / N_{C}$.

- Set up in: [Witten, PRL'80] [Di Vecchia \& Veneziano,'80] [Rosenzweig, Schechter \& Trahern, '80]
- Chiral Lagrangian to $\mathcal{O}\left(p^{4}\right)$ completed in:
[Herrera-Siklody, Latorre, Pascual, Taron, NPB'97]. See also [Kaiser, Leutwyler, EPJC'00].
- Applications Light quark masses: [Leutwyler, PLB'96] $\eta-\eta^{\prime}$ mixing: [Herrera-Siklody, Latorre, Pascual, Taron, PLB'98] [Leutwyler, NPB(Proc.Suppl)'98]
$\eta^{\prime} \rightarrow \eta \pi \pi$ decay: [Escribano,Masjuan, Sanz-Cillero, JHEP'11]
- Our current work offers the complete one-loop amplitudes of the meson-meson scattering within $U(3) \chi \mathrm{PT}$.
And then we study the properties of various resonances, such as their pole positions, residues and N_{C} behaviour, by unitarizing the $U(3) \chi \mathrm{PT}$ amplitudes.

There are variant methods to treat η^{\prime} in the market

- Matter filed: $M_{\eta^{\prime}}^{2} \sim \mathcal{O}(1)$ and Infrared Regularization method used to handle the loops. [Beisert, Borasoy, NPA'02, PRD'03]
- Non-relativistic field [Kubis, Schneider, EPJC'09]

Relevant Chiral Lagrangian

$$
\begin{equation*}
\mathcal{L}^{\left(\delta^{0}\right)}=\frac{F^{2}}{4}\left\langle u_{\mu} u^{\mu}\right\rangle+\frac{F^{2}}{4}\left\langle\chi_{+}\right\rangle+\frac{F^{2}}{3} M_{0}^{2} \ln ^{2} \operatorname{det} u \tag{1}
\end{equation*}
$$

where

$$
\begin{gather*}
u=e^{i \frac{\Phi}{\sqrt{2}}}, U=u^{2}, \\
u_{\mu}=i u^{\dagger} D_{\mu} U u^{\dagger}=u_{\mu}^{\dagger}, \chi_{ \pm}=u^{\dagger} \chi u^{\dagger} \pm u \chi^{\dagger} u, \\
\Phi=\left(\begin{array}{ccc}
\frac{\sqrt{3} \pi^{0}+\eta_{8}+\sqrt{2} \eta_{1}}{\sqrt{6}} & \pi^{+} & K^{+} \\
\pi^{-} & \frac{-\sqrt{3} \pi^{0}+\eta_{8}+\sqrt{2} \eta_{1}}{\sqrt{6}} & K^{0} \\
K^{-} & \bar{K}^{0} & \frac{-2 \eta_{8}+\sqrt{2} \eta_{1}}{\sqrt{6}}
\end{array}\right) . \tag{2}
\end{gather*}
$$

$L_{i} \mathrm{~s}$ correspond to the higher order local operators. At $\mathcal{O}(\delta)$ one has $\mathcal{O}\left(N_{C} p^{4}\right)$ and $\mathcal{O}\left(N_{C}^{0} p^{2}\right)$ operators:

$$
\begin{aligned}
\mathcal{L}^{(\delta)} & =L_{2}\left\langle u_{\mu} u_{\nu} u^{\mu} u^{\nu}\right\rangle+\left(2 L_{2}+L_{3}\right)\left\langle u_{\mu} u^{\mu} u_{\nu} u^{\nu}\right\rangle \\
& +L_{5}\left\langle u_{\mu} u^{\mu} \chi_{+}\right\rangle+L_{8} / 2\left\langle\chi_{+} \chi_{+}+\chi-\chi-\right\rangle+\ldots \\
& +F^{2} \Lambda_{1} / 12 D_{\mu} \psi D^{\mu} \psi-i F^{2} \Lambda_{2} / 12 \psi\left\langle U^{\dagger} \chi-\chi^{\dagger} U\right\rangle+\ldots
\end{aligned}
$$

At $\mathcal{O}\left(\delta^{2}\right)$ (same order as the one-loop contribution), one then has $\mathcal{O}\left(N_{C}^{-2} p^{0}\right), \mathcal{O}\left(N_{C}^{-1} p^{2}\right), \mathcal{O}\left(N_{C}^{0} p^{4}\right)$ and $\mathcal{O}\left(N_{C} p^{6}\right)$ operators:

$$
\begin{aligned}
\mathcal{L}^{\left(\delta^{2}\right)}= & \tilde{v}_{0}^{(4)} X^{4}+\tilde{v}_{1}^{(2)} X^{2}\left\langle u_{\mu} u^{\mu}\right\rangle+L_{4}\left\langle u_{\mu} u^{\mu}\right\rangle\left\langle\chi_{+}\right\rangle \\
& +C_{1}\left\langle u_{\rho} u^{\rho} h_{\mu \nu} h^{\mu \nu}\right\rangle+\ldots,
\end{aligned}
$$

with $\psi=-i \ln \operatorname{det} U, X=\log \operatorname{det}(U)$ and $h_{\mu \nu}=\nabla_{\mu} u_{\nu}+\nabla_{\nu} u_{\mu}$. [Herrera-Siklody, Latorre, Pascual, Taron, NPB'97]
[Bijnens, Colangelo, Ecker, JHEP'99]

Alternatively, one could use resonances to estimate the higher order low energy constants:

$$
\begin{align*}
\mathcal{L}_{S}= & c_{d}\left\langle S_{8} u_{\mu} u^{\mu}\right\rangle+c_{m}\left\langle S_{8} \chi_{+}\right\rangle \\
& +\widetilde{c}_{d} S_{1}\left\langle u_{\mu} u^{\mu}\right\rangle+\widetilde{c}_{m} S_{1}\left\langle\chi_{+}\right\rangle+\ldots \tag{3}\\
\mathcal{L}_{V}= & \frac{i G_{V}}{2 \sqrt{2}}\left\langle V_{\mu \nu}\left[u^{\mu}, u^{\nu}\right]\right\rangle+\ldots \tag{4}
\end{align*}
$$

[Ecker, Gasser, Pich, de Rafael, NPB'89]

In the current discussion, we assume the resonance saturation and exploit the above resonance operators to calculate the meson-meson scattering.

The monomials proportional to Λ_{1} and Λ_{2} are not generated through resonance exchange. No double counting.

Perturbative calculation of the scattering amplitudes

Figure: Relevant Feynman diagrams for mass, wave function renormalization and $\eta-\eta^{\prime}$ mixing

The leading order $\eta-\eta^{\prime}$ mixing has to be solved exactly

Figure: The dot denotes the mixing of η_{8} and η_{1} at leading order, which is proportional to $m_{K}^{2}-m_{\pi}^{2}$.

Scattering amplitudes consist of

Figure: Relevant Feynman diagrams for the pseudo Goldstone decay constant. The wiggly line corresponds to the axial-vector external source.

We expressed all the amplitudes in terms of physical masses and F_{π}, i.e. reshuffling the leading order contributions.

Partial wave amplitude and its unitarization

Partial wave projection:

$$
\begin{equation*}
T_{J}^{\prime}(s)=\frac{1}{2(\sqrt{2})^{N}} \int_{-1}^{1} d x P_{J}(x) T^{\prime}[s, t(x), u(x)] \tag{5}
\end{equation*}
$$

where $P_{J}(x)$ denote the Legendre polynomials and $(\sqrt{2})^{N}$ is a symmetry factor to account for the identical particles, such as $\pi \pi, \eta \eta, \eta^{\prime} \eta^{\prime}$.

The essential of the N / D method is to construct the unitarized T_{J} : [Chew, Mandelstam, PR'60]

$$
\begin{equation*}
T_{J}=\frac{N}{D}, \tag{6}
\end{equation*}
$$

where

$$
\begin{align*}
& \operatorname{Im} D=N \operatorname{Im} T_{J}=-\rho N, \quad \text { for } s>4 m^{2} \\
& \operatorname{Im} D=0, \quad \text { for } s<4 m^{2}, \\
& \operatorname{Im} N=D \operatorname{Im} T_{J}, \quad \text { for } s<0, \\
& \operatorname{Im} N=0, \quad \text { for } s>0, \tag{7}
\end{align*}
$$

due to the fact that the unitarity condition for the elastic channel is

$$
\begin{equation*}
\operatorname{Im} T_{J}^{-1}=-\rho, \quad s>4 m^{2} \tag{8}
\end{equation*}
$$

where $\rho=\sqrt{1-4 m^{2} / s} / 16 \pi$.

One can now write the dispersion relations for N and D :

$$
\begin{gather*}
D(s)=\widetilde{a}^{S L}\left(s_{0}\right)-\frac{s-s_{0}}{\pi} \int_{4 m^{2}}^{\infty} \frac{N\left(s^{\prime}\right) \rho\left(s^{\prime}\right)}{\left(s^{\prime}-s\right)\left(s^{\prime}-s_{0}\right)} d s^{\prime}+\ldots, \tag{9}\\
N(s)=\int_{-\infty}^{0} \frac{D\left(s^{\prime}\right) \operatorname{Im} T_{J}\left(s^{\prime}\right)}{s^{\prime}-s} d s^{\prime} \tag{10}
\end{gather*}
$$

It can be greatly simplified if one imposes the perturbative solution for $N(s)$ instead of the left hand discontinuity [Oller, Oset, PRD'99],

$$
\begin{equation*}
T_{J}(s)=\frac{N(s)}{1+g(s) N(s)} \tag{11}
\end{equation*}
$$

where

$$
\begin{equation*}
g(s)=\frac{a^{S L}\left(s_{0}\right)}{16 \pi^{2}}-\frac{s-s_{0}}{\pi} \int_{4 m^{2}}^{\infty} \frac{\rho\left(s^{\prime}\right)}{\left(s^{\prime}-s\right)\left(s^{\prime}-s_{0}\right)} d s^{\prime} \tag{12}
\end{equation*}
$$

Matching the $T_{J}(s)=N(s) /[1+g(s) N(s)]$ with $\left.T_{J}(s)\right|_{\chi P T}=T_{2}+T_{\text {Resonance }}+T_{\text {Loop }}$ up to one-loop:

$$
\begin{equation*}
N(s)=T_{2}+T_{\text {Resonance }}+T_{\text {Loop }}+T_{2} g(s) T_{2} \tag{13}
\end{equation*}
$$

The generalization to the inelastic case is straightforward:

$$
\begin{equation*}
T_{J}(s)=N(s) \cdot[1+g(s) \cdot N(s)]^{-1} . \tag{14}
\end{equation*}
$$

This formalism has been explored in many areas. See in this conference the talks already done by Alarcon, F.K.Guo, Magalaes, Molina, Oset.

For $I J=00$ case, we have 5 channels: $\pi \pi, K \bar{K}, \eta \eta, \eta \eta^{\prime}$ and $\eta^{\prime} \eta^{\prime}$

$$
\begin{gathered}
N_{0}^{0}(s)=\left(\begin{array}{ccccc}
N_{\pi \pi \rightarrow \pi \pi} & N_{\pi \pi \rightarrow K \bar{K}} & N_{\pi \pi \rightarrow \eta \eta} & N_{\pi \pi \rightarrow \eta \eta^{\prime}} & N_{\pi \pi \rightarrow \eta^{\prime} \eta^{\prime}} \\
N_{\pi \pi \rightarrow K \bar{K}} & N_{K \bar{K} \rightarrow K \bar{K}} & N_{K \bar{K} \rightarrow \eta \eta} & N_{K \bar{K} \rightarrow \eta \eta^{\prime}} & N_{K \bar{K} \rightarrow \eta^{\prime} \eta^{\prime}} \\
N_{\pi \pi \rightarrow \eta \eta} & N_{K \bar{K} \rightarrow \eta \eta} & N_{\eta \eta \rightarrow \eta \eta} & N_{\eta \eta \rightarrow \eta \eta^{\prime}} & N_{\eta \rightarrow \eta^{\prime} \eta^{\prime}} \\
N_{\pi \pi \rightarrow \eta \eta^{\prime}} & N_{K \bar{K} \rightarrow \eta \eta^{\prime}} & N_{\eta \eta \rightarrow \eta^{\prime}} & N_{\eta \eta^{\prime} \rightarrow \eta \eta^{\prime}} & N_{\eta^{\prime} \eta^{\prime} \eta^{\prime}} \\
N_{\pi \pi \rightarrow \rightarrow \eta^{\prime} \eta^{\prime}} & N_{K \bar{K} \eta^{\prime} \eta^{\prime}} & N_{\eta \eta \rightarrow \eta^{\prime} \eta^{\prime}} & N_{\eta \eta^{\prime} \rightarrow \eta^{\prime} \eta^{\prime}} & N_{\eta^{\prime} \eta^{\prime} \rightarrow \eta^{\prime} \eta^{\prime}}
\end{array}\right) \\
g_{0}^{0}(s)=\left(\begin{array}{ccccc}
g_{\pi \pi} & 0 & 0 & 0 & 0 \\
0 & g_{K \bar{K}} & 0 & 0 & 0 \\
0 & 0 & g_{\eta \eta} & 0 & 0 \\
0 & 0 & 0 & g_{\eta \eta^{\prime}} & 0 \\
0 & 0 & 0 & 0 & g_{\eta^{\prime} \eta^{\prime}}
\end{array}\right) .
\end{gathered}
$$

For $I J=10$, we have 3 channels: $\pi \eta, K \bar{K}$ and $\pi \eta^{\prime}$

$$
\begin{gathered}
N(s)_{0}^{1}=\left(\begin{array}{ccc}
N_{\pi \eta \rightarrow \pi \eta} & N_{\pi \eta \rightarrow K \bar{K}} & N_{\pi \eta \rightarrow \pi \eta^{\prime}} \\
N_{\pi \eta \rightarrow K \bar{K}} & N_{K \bar{K} \rightarrow K \bar{K}} & N_{K \bar{K} \rightarrow \pi \eta^{\prime}} \\
N_{\pi \eta \rightarrow \pi \eta^{\prime}} & N_{K \bar{K} \rightarrow \pi \eta^{\prime}} & N_{\pi \eta^{\prime} \rightarrow \pi \eta^{\prime}}
\end{array}\right) \\
g(s)_{0}^{1}=\left(\begin{array}{ccc}
g_{\pi \eta} & 0 & 0 \\
0 & g_{K \bar{K}} & 0 \\
0 & 0 & g_{\pi \eta^{\prime}}
\end{array}\right) .
\end{gathered}
$$

For $I J=1 / 2 \quad 0$, there are three channels: $K \pi, K \eta$ and $K \eta^{\prime}$

$$
\begin{gathered}
N(s)_{0}^{1 / 2}=\left(\begin{array}{ccc}
N_{K \pi \rightarrow K \pi} & N_{K \pi \rightarrow K \eta} & N_{K \pi \rightarrow K \eta^{\prime}} \\
N_{K \pi \rightarrow K \eta} & N_{K \eta \rightarrow K \eta} & N_{K \eta \rightarrow K \eta^{\prime}} \\
N_{K \pi \rightarrow K \eta^{\prime}} & N_{K \eta \rightarrow K \eta^{\prime}} & N_{K \eta^{\prime} \rightarrow K \eta^{\prime}}
\end{array}\right), \\
g(s)_{0}^{1 / 2}=\left(\begin{array}{ccc}
g_{K \pi} & 0 & 0 \\
0 & g_{K \eta} & 0 \\
0 & 0 & g_{K \eta^{\prime}}
\end{array}\right) .
\end{gathered}
$$

The same expressions hold for $I J=1 / 21$.

For $I J=11$ there are 2 channels

$$
\begin{gathered}
N_{1}^{1}(s)=\left(\begin{array}{cc}
N_{\pi \pi \rightarrow \pi \pi} & N_{\pi \pi \rightarrow K \bar{K}} \\
N_{\pi \pi \rightarrow K \bar{K}} & N_{K \bar{K} \rightarrow K \bar{K}}
\end{array}\right), \\
g_{1}^{1}(s)=\left(\begin{array}{cc}
g_{\pi \pi} & 0 \\
0 & g_{K \bar{K}}
\end{array}\right) .
\end{gathered}
$$

For $I J=3 / 20$, it is an elastic channel

$$
\begin{gathered}
N(s)_{0}^{3 / 2}=N_{K \pi \rightarrow K \pi} \\
g(s)_{0}^{3 / 2}=g_{K \pi}
\end{gathered}
$$

For $I J=20$, it is

$$
\begin{gathered}
N(s)_{0}^{2}=N_{\pi \pi \rightarrow \pi \pi} \\
g(s)_{0}^{2}=g_{\pi \pi} .
\end{gathered}
$$

Phenomenological discussion

We have 16 free parameters with 348 data and the fitted results are

$$
\begin{array}{ll}
c_{d}=\left(15.6_{-3.4}^{+4.2}\right) \mathrm{MeV}, & c_{m}=\left(31.5_{-22.5}^{+19.5}\right) \mathrm{MeV}, \\
\widetilde{c}_{d}=\left(8.7_{-1.7}^{+2.5}\right) \mathrm{MeV}, & \widetilde{c}_{m}=\left(15.8_{-3.0}^{+3.3}\right) \mathrm{MeV}, \\
M_{S_{8}}=\left(1370_{-57}^{+132}\right) \mathrm{MeV}, & M_{S_{1}}=\left(1063_{-31}^{+53}\right) \mathrm{MeV}, \\
M_{\rho}=\left(801.0_{-7.5}^{+7.0}\right) \mathrm{MeV}, & M_{K^{*}}=\left(909.0_{-6.9}^{+7.5}\right) \mathrm{MeV}, \\
G_{V}=\left(61.9_{-1.9}^{+1.9}\right) \mathrm{MeV}, & a_{S L}^{10, \pi \eta}=2.0_{-3.4}^{+3.1}, \\
a_{S L}^{00}=\left(-1.15_{-0.09}^{+0.07}\right), & a_{S L}^{\frac{1}{2} 0}=\left(-0.96_{-0.16}^{+0.10}\right), \\
\mathcal{N}=\left(0.6_{-0.3}^{+0.3}\right) \mathrm{MeV}^{-2}, & c=\left(1.0_{-0.4}^{+0.6}\right), \\
M_{0}=\left(954_{-95}^{+102}\right) \mathrm{MeV}, & \Lambda_{2}=\left(-0.6_{-0.4}^{+0.5}\right),
\end{array}
$$

with $\chi^{2} /$ d.o.f $=714 /(348-16) \simeq 2.15$.
$n_{\sigma}=\Delta \chi^{2} / \sqrt{2 \chi^{2}} \leq 2$ to get the errors, $n_{\sigma}=2$ Etkin et al. PRD'82

Poles from the unitarized amplitudes

- σ or $f_{0}(600), \quad I J=00$

$$
\begin{aligned}
& M_{\sigma}=440_{-3}^{+3} \mathrm{MeV}, \quad \Gamma_{\sigma} / 2=258_{-7}^{+5} \mathrm{MeV}, \\
& \left|g_{\sigma \pi \pi}\right|=3.02_{-0.03}^{+0.03} \mathrm{GeV}, \\
& \left|g_{\sigma K \bar{K}}\right| /\left|g_{\sigma \pi \pi}\right|=0.51_{-0.02}^{+0.03},\left|g_{\sigma \eta \eta}\right| /\left|g_{\sigma \pi \pi}\right|=0.06_{-0.01}^{+0.03} \\
& \left|g_{\sigma \eta \eta^{\prime}}\right| /\left|g_{\sigma \pi \pi}\right|=0.16_{-0.02}^{+0.03},\left|g_{\sigma \eta^{\prime} \eta^{\prime}}\right| /\left|g_{\sigma \pi \pi}\right|=0.05_{-0.03}^{+0.03}
\end{aligned}
$$

Other approaches:
$M_{\sigma}=470 \pm 50, \Gamma_{\sigma} / 2=285 \pm 25$ Zhou, et al. JHEP'05
$M_{\sigma}=441_{-8}^{+16}, \Gamma_{\sigma} / 2=272_{-13}^{+9}$ Caprini et al. PRL'06
$M_{\sigma}=484 \pm 17, \Gamma_{\sigma} / 2=255 \pm 10$ García-Martín et al. PRD'07
$M_{\sigma}=456 \pm 6, \Gamma_{\sigma} / 2=241 \pm 17$ Albaladejo, Oller PRL'08

- $f_{0}(980), I J=00$

$$
\begin{aligned}
& M_{f_{0}}=981_{-7}^{+9} \mathrm{MeV}, \quad \Gamma_{f_{0}} / 2=22_{-7}^{+5} \mathrm{MeV}, \\
& \left|g_{f_{0} \pi \pi}\right|=1.7_{-0.3}^{+0.3} \mathrm{GeV} \\
& \left|g_{f_{0} K \bar{K}}\right| /\left|g_{f_{0} \pi \pi}\right|=2.3_{-0.2}^{+0.3},\left|g_{f_{0} \eta \eta}\right| /\left|g_{f_{0} \pi \pi}\right|=1.6_{-0.3}^{+0.3} \\
& \left|g_{f_{0} \eta \eta^{\prime}}\right| /\left|g_{f_{0} \pi \pi}\right|=1.2_{-0.2}^{+0.1},\left|g_{f_{0} \eta^{\prime} \eta^{\prime}}\right| /\left|g_{f_{0} \pi \pi}\right|=0.7_{-0.5}^{+0.4}
\end{aligned}
$$

- $f_{0}(1370), I J=00$

$$
\begin{aligned}
& M_{f_{0}}=1401_{-37}^{+58} \mathrm{MeV}, \quad \Gamma_{f_{0}} / 2=106_{-23}^{+36} \mathrm{MeV}, \\
& \left|g_{f_{0} \pi \pi}\right|=2.4_{-0.1}^{+0.2} \mathrm{GeV} \\
& \left|g_{f_{0} K \bar{K}}\right| /\left|g_{f_{0} \pi \pi}\right|=0.62_{-0.05}^{+0.04},\left|g_{f_{0} \eta \eta}\right| /\left|g_{f_{0} \pi \pi}\right|=0.9_{-0.1}^{+0.1} \\
& \left|g_{f_{0} \eta \eta^{\prime}}\right| /\left|g_{f_{0} \pi \pi}\right|=1.7_{-0.6}^{+0.4},\left|g_{f_{0} \eta^{\prime} \eta^{\prime}}\right| /\left|g_{f_{0} \pi \pi}\right|=1.1_{-0.5}^{+0.4}
\end{aligned}
$$

Both resonances have strong couplings to states with η, η^{\prime}

- κ or $K_{0}^{*}(800), I J=1 / 20$

$$
\begin{aligned}
& M_{\kappa}=665_{-9}^{+9} \mathrm{MeV}, \quad \Gamma_{\kappa} / 2=268_{-6}^{+21} \mathrm{MeV} \\
& \left|g_{\kappa K \pi}\right|=4.2_{-0.2}^{+0.2} \mathrm{GeV} \\
& \left|g_{\kappa K \eta}\right| /\left|g_{\kappa K \pi}\right|=0.7_{-0.1}^{+0.1},\left|g_{\kappa K \eta^{\prime}}\right| /\left|g_{\kappa K \pi}\right|=0.50_{-0.1}^{+0.1}
\end{aligned}
$$

Other approaches:

$$
\begin{aligned}
& \sqrt{s}=(594 \pm 79-i 362 \pm 166) \mathrm{MeV} \text { Zheng, et al. NPA'04 } \\
& \sqrt{s}=(658 \pm 13-i 278 \pm 12) \mathrm{MeV} \text { Descotes, Moussallam EPJC'06 } \\
- & K_{0}^{*}(1430), I J=1 / 20
\end{aligned}
$$

$$
\begin{aligned}
& M_{K_{0}^{*}}=1428_{-23}^{+56} \mathrm{MeV}, \quad \Gamma_{K_{0}^{*}} / 2=87_{-28}^{+53} \mathrm{MeV}, \\
& \left|g_{K_{0}^{*} K \pi}\right|=3.3_{-0.4}^{+0.5} \mathrm{GeV} \\
& \left|g_{K_{0}^{*} K \eta}\right| /\left|g_{K_{0}^{*} K \pi}\right|=0.54_{-0.02}^{+0.07},\left|g_{K_{0}^{*} K \eta^{\prime}}\right| /\left|g_{K_{0}^{*} K \pi}\right|=1.2_{-0.3}^{+0.2}
\end{aligned}
$$

- $a_{0}(980), I J=10$

$$
\begin{aligned}
& M_{a_{0}}=1012_{-7}^{+25} \mathrm{MeV}, \Gamma_{a_{0}} / 2=16_{-13}^{+50} \mathrm{MeV} \\
& \left|g_{a_{0} \pi \eta}\right|=2.5_{-0.8}^{+1.3} \mathrm{GeV} \\
& \left|g_{a_{0} K \bar{K}}\right| /\left|g_{a_{0} \pi \eta}\right|=1.9_{-0.3}^{+0.2},\left|g_{a_{0} \pi \eta^{\prime}}\right| /\left|g_{a_{0} \pi \eta}\right|=0.01_{-0.01}^{+0.03}
\end{aligned}
$$

- $a_{0}(1450), I J=10$

$$
\begin{aligned}
& M_{a_{0}}=1368_{-68}^{+68} \mathrm{MeV}, \Gamma_{a_{0}} / 2=71_{-23}^{+48} \mathrm{MeV}, \\
& \left|g_{a_{0} \pi \eta}\right|=2.3_{-0.5}^{+0.4} \mathrm{GeV} \\
& \left|g_{a_{0} K \bar{K}}\right| /\left|g_{a_{0} \pi \eta}\right|=0.6_{-0.2}^{+0.7},\left|g_{a_{0} \pi \eta^{\prime}}\right| /\left|g_{a_{0} \pi \eta}\right|=0.6_{-0.1}^{+0.2}
\end{aligned}
$$

- $\rho(770) \quad, \quad I J=11$

$$
\begin{aligned}
& M_{\rho}=762_{-4}^{+4} \mathrm{MeV}, \quad \Gamma_{\rho} / 2=72_{-2}^{+2} \mathrm{MeV} \\
& \left|g_{\rho \pi \pi}\right|=2.48_{-0.05}^{+0.03} \mathrm{GeV},\left|g_{\rho K \bar{K}}\right| /\left|g_{\rho \pi \pi}\right|=0.64_{-0.01}^{+0.01}
\end{aligned}
$$

- $K^{*}(892), \quad I J=1 / 21$

$$
\begin{aligned}
& M_{K^{*}}=891_{-4}^{+3} \mathrm{MeV}, \quad \Gamma_{K^{*}} / 2=25_{-1}^{+2} \mathrm{MeV}, \\
& \left|g_{K^{*} \pi K}\right|=1.86_{-0.05}^{+0.05} \mathrm{GeV} \\
& \left|g_{K^{*} K \eta}\right| /\left|g_{K^{*} K \pi}\right|=0.91_{-0.02}^{+0.03},\left|g_{K^{*} K \eta^{\prime}}\right| /\left|g_{K^{*} K \pi}\right|=0.45_{-0.08}^{+0.08}
\end{aligned}
$$

- $\phi(1020), \quad I J=01$

$$
\begin{aligned}
& M_{\phi}=1019.5_{-0.3}^{+0.3} \mathrm{MeV}, \quad \Gamma_{\phi} / 2=2.00_{-0.08}^{+0.04} \mathrm{MeV} \\
& \left|g_{\phi K \bar{K}}\right|=0.85_{-0.02}^{+0.01} \mathrm{GeV}
\end{aligned}
$$

Running of pole positions with N_{C}

For the first time the N_{C} dependence of the pseudo-Goldstone masses and mixing angle are taken into account for determining resonance properties with increasing N_{C}.

In $S U(3) \chi \mathrm{PT}$, there is one mixing ingredient for the large N_{C} limit: the singlet η_{1}.
The leading order behaviours of the parameters at large N_{C} are

$$
\begin{aligned}
& M_{0}^{2} \sim \Lambda_{2} \sim 1 / N_{c} \\
& c_{d} \sim c_{m} \sim \widetilde{c}_{d} \sim \widetilde{c}_{m} \sim G_{V} \sim F \sim \sqrt{N_{c}} \\
& M_{V}^{2} \sim M_{S_{8}}^{2} \sim M_{S_{1}}^{2} \sim B \sim a_{S L} \sim \mathcal{O}\left(N_{c}^{0}\right)
\end{aligned}
$$

with $\bar{m}_{\pi}^{2}=2 B m_{u}, \bar{m}_{K}^{2}=B\left(m_{u}+m_{s}\right)$.
[Ecker, et al., NPB'89] [Kaiser,Leutwyler, EPJC'00]

The next-to-leading order of $1 / N_{C}$ running can be read out from our prediction for F_{π}

$$
\begin{aligned}
F_{\pi}=F\{1+ & \frac{1}{16 \pi^{2} F_{\pi}^{2}}\left[A_{0}\left(m_{\pi}^{2}\right)+\frac{1}{2} A_{0}\left(m_{K}^{2}\right)\right] \\
& \left.+\left[\frac{4 \widetilde{c}_{d} \widetilde{c}_{m}\left(m_{\pi}^{2}+2 m_{K}^{2}\right)}{F_{\pi}^{2} M_{S_{1}}^{2}}-\frac{8 c_{d} c_{m}\left(m_{K}^{2}-m_{\pi}^{2}\right)}{3 F_{\pi}^{2} M_{S_{8}}^{2}}\right]\right\}
\end{aligned}
$$

In addition we also take the following assumptions for the next-to-leading order of $1 / N_{C}$ pieces for the other resonance couplings

$$
c_{d}\left(N_{C}\right)=c_{d}\left(N_{C}=3\right) \frac{F_{\pi}\left(N_{C}\right)}{F_{\pi}\left(N_{C}=3\right)},
$$

similar expressions also apply for $c_{m}, \widetilde{c}_{d}, \widetilde{c}_{m}, G_{V}$ due to the high energy constraint from QCD

$$
c_{d}=c_{m}=\sqrt{3} \widetilde{c}_{d}=\sqrt{3} \widetilde{c}_{m}=\frac{F_{\pi}}{2}, \quad G_{V}=\frac{F_{\pi}}{\sqrt{2}} \text { or } \frac{F_{\pi}}{\sqrt{3}} .
$$

[Ecker, et al., PLB'89] [Jamin, et al., NPB'00] [Guo, et al., JHEP'07]

Pseudoscalar masses with varying N_{C}

Leading order $1 / N_{c} \rightarrow \infty$ prediction ($M_{0} \rightarrow 0$):
$m_{\eta}^{2}=\bar{m}_{\pi}^{2}=\left(139.5_{-4.6}^{+4.4}\right)^{2} \mathrm{MeV}^{2}, m_{\eta^{\prime}}^{2}=2 \bar{m}_{K}^{2}-\bar{m}_{\pi}^{2}=\left(721.5_{-11.1}^{+17.4}\right)^{2} \mathrm{MeV}^{2}$.

Ideal Mixing (OZI rule is exact): leading order mixing angle $\theta=-54.7^{\circ}$

Two approximations of our full results are studied for the resonance poles

- vector reduced :

$$
\frac{1}{M_{V}^{2}-t} \rightarrow \frac{1}{M_{V}^{2}}
$$

We only includes the NLO local terms in χ PT in this scheme.

- Mimic $S U(3)$: Mixing is set to zero and η_{1} is kept in the loops. $\pi, K, \eta_{8}, \eta_{1}$ masses are frozen. Differences highlight the role of η and η^{\prime}.

- The results from one-loop inverse amplitude (IAM) are quite similar with the vector reduced case. [Pelaez, '04][Sun, et al. '07][Ruiz-Arriolla, Nieves, '09]
- Two-loop(SU(2)) IAM shows a quite different picture: σ moves to a pole with zero width at 1 GeV . [Pelaez, Rios, '06][Sun, et al. '07] We also obtain such a pole but it comes from the bare scalar singlet $M_{S_{1}} \simeq 1 \mathrm{GeV}$ (At $N_{C}=3$ it contributes to the $f_{0}(980)$.)

A short summary of our finding for σ :

- The one-loop IAM study reflects a specific approximation of our full result: vector reduced. Whereas the scalar reduced approximation perfectly agrees with the full result.
- The mimic $S U(3)$ approximation turns out to be quite similar to the full result of the σ trajectory, indicating σ is insensitive to η and η^{\prime} even for large N_{C}.
- The possible source of the disagreement of our result and the two-loop IAM is the higher order local terms, because much more resonance operators will be involved to produce the $\mathcal{O}\left(p^{6}\right)$ LECs.
[Cirigliano, et al., NPB'06]

Figure: N_{C} trajectory for $a_{0}(980)$

Figure: N_{C} trajectory for κ

Figure: N_{C} running of the residues for K^{*}

Conclusions

- A complete one-loop calculation of all meson-meson scattering amplitudes within $U(3) \chi$ PT has been worked out for the first time in literature.
- A variant N/D method has been employed to resum the s-channel loops. Various resonance poles in the complex plane and their residues have been calculated.
- N_{C} dependence of the resonance pole positions and the residuals, are studied, also for the first time in literature, by taking into account the N_{C} running of the pseudo-Goldstone masses and the $\eta-\eta^{\prime}$ mixing angle.

Danke!

$$
\begin{aligned}
\bar{\eta} & =\cos \theta \eta_{8}-\sin \theta \eta_{1} \\
\bar{\eta}^{\prime} & =\sin \theta \eta_{8}+\cos \theta \eta_{1} \\
m_{\bar{\eta}}^{2}= & \frac{M_{0}^{2}}{2}+\bar{m}_{K}^{2}-\frac{\sqrt{M_{0}^{4}-\frac{4 M_{0}^{2} \Delta^{2}}{3}+4 \Delta^{2}}}{2} \\
m_{\bar{\eta}^{\prime}}^{2}= & \frac{M_{0}^{2}}{2}+\bar{m}_{K}^{2}+\frac{\sqrt{M_{0}^{4}-\frac{4 M_{0}^{2} \Delta^{2}}{3}+4 \Delta^{2}}}{2}
\end{aligned}
$$

$$
\sin \theta=-1 / \sqrt{1+\left(3 M_{0}^{2}-2 \Delta^{2}+\sqrt{9 M_{0}^{4}-12 M_{0}^{2} \Delta^{2}+36 \Delta^{4}}\right)^{2} / 32 \Delta^{4}}
$$

$$
\Delta^{2}=\bar{m}_{K}^{2}-\bar{m}_{\pi}^{2} \quad, \quad \sin \theta \rightarrow 0 \text { for } \Delta^{2} \rightarrow 0 \text {, i.e. in } S U(3) \text { limit. }
$$

The NLO $\bar{\eta}-\bar{\eta}^{\prime}$ mixing can be treated perturbatively

$$
\begin{aligned}
& \mathcal{L}= \frac{1+\delta_{\overline{\bar{\eta}}}}{2} \partial_{\mu} \bar{\eta} \partial^{\mu} \bar{\eta}+\frac{1+\delta_{\bar{\eta}^{\prime}}}{2} \partial_{\mu} \bar{\eta}^{\prime} \partial^{\mu} \bar{\eta}^{\prime}+\delta_{k} \partial_{\mu} \bar{\eta} \partial^{\mu} \bar{\eta}^{\prime} \\
&-\frac{m_{\bar{\eta}}^{2}+\delta_{m_{\bar{\eta}}^{2}}}{2} \bar{\eta} \bar{\eta}-\frac{m_{\bar{\eta}^{\prime}}^{2}+\delta_{m_{\overline{\bar{\eta}}^{\prime}}^{2}} \bar{\eta}^{\prime} \bar{\eta}^{\prime}-\delta_{m^{2}} \bar{\eta} \bar{\eta}^{\prime}}{2} . \\
&\binom{\eta}{\eta^{\prime}}=\left(\begin{array}{cc}
\cos \theta_{\delta} & -\sin \theta_{\delta} \\
\sin \theta_{\delta} & \cos \theta_{\delta}
\end{array}\right)\left(\begin{array}{cc}
1+\frac{\delta_{\overline{\overline{ }}}}{2} & \frac{\delta_{k}}{2} \\
\frac{\delta_{k}}{2} & 1+\frac{\delta_{\bar{T}^{\prime}}^{2}}{2}
\end{array}\right)\binom{\bar{\eta}}{\bar{\eta}^{\prime}} .
\end{aligned}
$$

Observables fitted:
$\downarrow I=J=0: \delta_{\pi \pi \rightarrow \pi \pi}^{00},\left|S_{\pi \pi \rightarrow \pi \pi}^{00}\right|, \frac{1}{2}\left|S_{\pi \pi \rightarrow K \bar{K}}^{00}\right|, \delta_{\pi \pi \rightarrow K \bar{K}}^{00}$

- $I=J=1: \delta_{\pi \pi \rightarrow \pi \pi}^{11}$
- $I=1 / 2 J=0,1: \delta_{\pi K \rightarrow \pi K}^{\frac{1}{2} 0}, \delta_{\pi K \rightarrow \pi K}^{\frac{1}{2} 1}$
- $I=2 J=0: \delta_{\pi \pi \rightarrow \pi \pi}^{20}$
- $I=3 / 2 J=0: \delta_{\pi K \rightarrow \pi K}^{\frac{3}{2} 0}$
- $I=1 J=0: \pi \eta$ event distribution around $a_{0}(980)$

$$
\frac{d N_{\pi \eta}}{d E_{\pi \eta}}=q_{\pi \eta} \mathcal{N}\left|T_{K \bar{K} \rightarrow \pi \eta}(s)+c T_{\pi \eta \rightarrow \pi \eta}(s)\right|^{2}
$$

$\Rightarrow m_{\eta}, m_{\eta^{\prime}}$

Subtraction Constants: The number of free ones can be reduced enormously by applying Isospin and $U(3)$ symmetry. Jido, Oller, Oset, Ramos,Meißner, NPA'03

- Isospin Symmetry requires that all the $a_{S L}^{I J}$ are the same separately for $\pi \pi, K \bar{K}$ and $K \pi$
- $U(3)$ Symmetry requires that all $a_{S L}^{I J}$ are the same for a given J

$$
\begin{aligned}
& a_{S L}^{00}=a_{S L}^{00, \pi \pi}=a_{S L}^{00, K \bar{K}}=a_{S L}^{00, \eta \eta}=a_{S L}^{00, \eta \eta^{\prime}}=a_{S L}^{00, \eta^{\prime} \eta^{\prime}}=a_{S L}^{20, \pi \pi} \\
& =a_{S L}^{10, \pi \eta^{\prime}}=a_{S L}^{100} K \bar{K} \\
& a_{S L}^{\frac{1}{2} 0}=a_{S L}^{\frac{1}{2} 0, K \pi}=a_{S L}^{\frac{1}{2} 0, K \eta}=a_{S L}^{\frac{1}{2} 0, K \eta^{\prime}}=a_{S L}^{\frac{3}{2} 0, K \pi} \\
& a_{S L}^{10, \pi \eta}
\end{aligned}
$$

All the subtraction constants in the vector channels are set equal to $a_{S L}^{00}$ (play a little role).

We have 16 free parameters with 348 data and the fitted results are

$$
\begin{array}{ll}
c_{d}=\left(15.6_{-3.4}^{+4.2}\right) \mathrm{MeV}, & c_{m}=\left(31.5_{-22.5}^{+19.5}\right) \mathrm{MeV}, \\
\widetilde{c}_{d}=\left(8.7_{-1.7}^{+2.5}\right) \mathrm{MeV}, & \widetilde{c}_{m}=\left(15.8_{-3.0}^{+3.3}\right) \mathrm{MeV}, \\
M_{S_{8}}=\left(1370_{-57}^{+132}\right) \mathrm{MeV}, & M_{S_{1}}=\left(1063_{-31}^{+53}\right) \mathrm{MeV}, \\
M_{\rho}=\left(801.0_{-7.5}^{+7.0}\right) \mathrm{MeV}, & M_{K^{*}}=\left(909.0_{-6.9}^{+7.5}\right) \mathrm{MeV}, \\
G_{V}=\left(61.9_{-1.9}^{+1.9}\right) \mathrm{MeV}, & a_{S L}^{10, \pi \eta}=2.0_{-3.4}^{+3.1}, \\
a_{S L}^{00}=\left(-1.15_{-0.09}^{+0.07}\right), & a_{S L}^{\frac{1}{2} 0}=\left(-0.96_{-0.16}^{+0.10}\right), \\
\mathcal{N}=\left(0.6_{-0.3}^{+0.3}\right) \mathrm{MeV}^{-2}, & c=\left(1.0_{-0.4}^{+0.6}\right), \\
M_{0}=\left(954_{-95}^{+102}\right) \mathrm{MeV}, & \Lambda_{2}=\left(-0.6_{-0.4}^{+0.5}\right),
\end{array}
$$

with $\chi^{2} /$ d.o.f $=714 /(348-16) \simeq 2.15$.
$n_{\sigma}=\Delta \chi^{2} / \sqrt{2 \chi^{2}} \leq 2$ to get the errors, $n_{\sigma}=2$ Etkin et al. PRD'82

Another strategy to perform the fit

The number of parameters can be reduced by imposing the following constraints [Ecker, Gasser, Pich, de Rafael, NPB'88]

$$
\begin{equation*}
\widetilde{c}_{d}=\frac{c_{d}}{\sqrt{3}}, \quad \widetilde{c}_{m}=\frac{c_{m}}{\sqrt{3}} \tag{15}
\end{equation*}
$$

and some of the parameters can be taken from other works: $M_{S_{1}}=1020 \mathrm{MeV}, M_{S_{8}}=1390 \mathrm{MeV}$ [Oller, Oset, PRD'99]; $M_{0}=850 \mathrm{MeV}$ from [Feldmann, IJMPLA'00];
$G_{V}=60.0 \mathrm{MeV}$, average value from
[Ecker, Gasser, Pich, de Rafael, PLB'89]
[Guo, Sanz-Cillero, Zheng, JHEP'07]
[Guo, Sanz-Cillero, PRD’09].

We have 10 free parameters with 348 data now and the fitted results are

$$
\begin{array}{ll}
c_{d}=17.4 \mathrm{MeV}, & c_{m}=28.1 \mathrm{MeV}, \\
M_{\rho}=800.4 \mathrm{MeV}, & M_{K^{*}}=910.0 \mathrm{MeV}, \\
a_{S L}^{00}=-1.14, & a_{S L}^{\frac{1}{2} 0}=-0.89, \\
\Lambda_{2}=-0.22, & a_{S L}^{10, \pi \eta}=2.0, \\
\mathcal{N}=0.55 \mathrm{MeV}^{-2}, & c=0.84,
\end{array}
$$

with $\chi^{2} /$ d.o.f $=842 /(348-10) \simeq 2.5$.

