Mass dependence of the heavy quark potential
and its effects on quarkonium states

Alexander Laschka
Norbert Kaiser Wolfram Weise

Physik Department
Technische Universität München

XIV International Conference on Hadron Spectroscopy
June 14, 2011
Heavy quark-antiquark potential

- **History:** phenomenological potential models
 - Fitted to low lying charmonium and bottomonium states
 - Typical shape: “Coulomb-plus-linear”

- **Today:** heavy quark-antiquark potential from QCD
 - Characteristic scales of non-relativistic bound states
 - m: heavy quark mass
 - mv: heavy quark momentum
 - mv^2: heavy quark energy
 - Effective field theory (EFT) methods
 - QCD \Rightarrow non-relativistic QCD (NRQCD, pNRQCD, vNRQCD)

Topics: Extended range of validity of perturbative potential
- Spectroscopy at order $1/m$
- Detailed analysis of the role of quark masses
1. Static quark-antiquark potential

2. Heavy quark potential at order $1/m$
The static potential

Non-perturbative sector: lattice studies of quenched and full QCD

- Static QCD potential (from static Wilson loop)

- Sea quark effects important at small distances

Alexander Laschka
Mass dependence of the heavy quark potential
Hadron 2011
Perturbative sector: static potential is known at three-loop order

Momentum space

\[\tilde{V}^{(0)}(|\vec{q}|) = -\frac{4\pi C_F}{\vec{q}^2} \alpha_s(|\vec{q}|) \left[1 + \frac{\alpha_s(|\vec{q}|)}{4\pi} a_1 + \left(\frac{\alpha_s(|\vec{q}|)}{4\pi} \right)^2 a_2 \right. \]

\[\left. + \left(\frac{\alpha_s(|\vec{q}|)}{4\pi} \right)^3 \left(a_3 + 8\pi^2 C_A^3 \ln \frac{\mu_{IR}^2}{\vec{q}^2} \right) + \ldots \right] \]

where \(C_F = 4/3, \ C_A = 3, \)
\(a_1 = 7, \ a_2 \approx 268.8, \ a_3 \approx 5199.8 \) \((n_f = 3)\)

- At N\(^3\)LO (three-loop order):
 - infrared divergences \(\mu_{IR}^2 \) from ultrasoft gluons

- Avoid expansion of \(\alpha_s(|\vec{q}|) \) about a fixed scale \(\mu \)

- Reliable potential from extremely small distances up to \(r \approx 0.15 \) fm needed
Potential subtracted (PS) scheme

PS scheme with numerical Fourier transform

Evaluate numerically (with a low-momentum cutoff μ_f)

$$V^{(0)}(\vec{r}, \mu_f) = -4\pi C_F \int_{|\vec{q}| > \mu_f} \frac{d^3\vec{q}}{(2\pi)^3} e^{i\vec{q}\cdot\vec{r}} \frac{\alpha_s(|\vec{q}|)}{\vec{q}^2} \left[1 + \frac{\alpha_s(|\vec{q}|)}{4\pi} a_1 + \left(\frac{\alpha_s(|\vec{q}|)}{4\pi}\right)^2 a_2 + \ldots \right]$$

- No free scale parameter μ
- Unknown constant is moved into the definition of m_{PS}:

$$2m_{pole} + V^{(0)}(r) = 2m_{PS}(\mu_f) + V^{(0)}(r, \mu_f)$$
Matching and uncertainty estimate

- Perturbative potential (here NNLO) and lattice potential matched

\[V(0)(r) - V(0)(0.5 \text{ fm}) \text{ [GeV]} \]

\[r \text{ [fm]} \]

- Differentiable quark-antiquark potential for distances up to \(\sim 1 \) fm
- Matching at 0.14 fm gives \(\mu_f = 0.9^{+0.3}_{-0.2} \) GeV

 (for charmonium and bottomonium)

- Grey band: uncertainty of lattice calculation and uncertainty of \(\alpha_s \)
- Dot-dashed curve: continuation of the “Coulomb-plus-linear” fit
Bottomonium spectrum

Solve the Schrödinger equation with this matched potential

![Graph showing the spectrum of bottomonium states with masses in GeV, single parameter $m_{PS}(0.908 \text{ GeV}) = 4.78 \text{ GeV}$, and PDG 2010 masses for bottom and charm quarks.]

- Single parameter $m_{PS}(0.908 \text{ GeV}) = 4.78 \text{ GeV}$
- Can be converted to the $\overline{\text{MS}}$ scheme

<table>
<thead>
<tr>
<th>$\overline{\text{MS}}$ masses [GeV]</th>
<th>$m_{\overline{\text{MS}}}$</th>
<th>PDG 2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>bottom quark</td>
<td>4.20±0.04</td>
<td>4.19$^{+0.18}_{-0.06}$</td>
</tr>
<tr>
<td>charm quark</td>
<td>1.23±0.04</td>
<td>1.27$^{+0.07}_{-0.09}$</td>
</tr>
</tbody>
</table>
1. Static quark-antiquark potential

2. Heavy quark potential at order $1/m$
Quark-antiquark potential at order $1/m$

- Expansion in inverse powers of the heavy quark mass m

$$V(r) = V^{(0)}(r) + \frac{V^{(1)}(r)}{m/2} + \frac{V^{(2)}(r)}{(m/2)^2} + \ldots$$

- Non-perturbative expression for $1/m$ potential is known

- Lattice simulations

 Efficient method from M. & Y. Koma and H. Wittig

 Quenched simulation, renormalization issues ($\approx 15\%$ error estimated)

 Contains a non-perturbative contribution

 Fit function

 $$V_{ln}^{(1)}(r) = -\frac{A_2}{r^2} + B_2 \ln r + C_2$$

 Effective string theory suggests

 logarithmic shape: $V^{(1)} \propto \ln r + C$

Perturbative potential at order $1/m$ \((C_F = \frac{4}{3}, C_A = 3)\)

\[
\tilde{V}^{(1)}(|\vec{q}|) = \frac{C_F \pi^2 \alpha_s^2(|\vec{q}|)}{2|\vec{q}|} \left[(-C_A) + \mathcal{O}(\alpha_s) \right]
\]

Restricted numerical Fourier transform

Differentiable quark-antiquark potential for distances up to ~ 1 fm

Matching at 0.14 fm gives $\mu'_f = 1.6^{+0.5}_{-0.8}$ GeV (for charmonium)

$\mu'_f = 1.9^{+0.4}_{-0.6}$ GeV (for bottomonium)

Grey band: uncertainty of lattice calculation and uncertainty of α_s
PS mass needs redefinition \(m_{\overline{\text{PS}}} (\mu_f) \rightarrow m_{\overline{\text{PS}}} (\mu_f, \mu'_f) \)

\[m_{\overline{\text{PS}}} (\mu_f, \mu'_f) \equiv m_{\overline{\text{PS}}} (\mu_f) - \frac{1}{8m} C_F C_A \alpha_s^2 \mu_f'^2 \]

- Quark masses from comparison with empirical quarkonium states

<table>
<thead>
<tr>
<th>(\overline{\text{MS}}) masses [GeV]</th>
<th>static</th>
<th>static + 1/m</th>
<th>PDG 2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>bottom quark</td>
<td>4.20±0.04</td>
<td>4.18±0.04</td>
<td>4.19±0.18</td>
</tr>
<tr>
<td>charm quark</td>
<td>1.23±0.04</td>
<td>1.28±0.07</td>
<td>1.27±0.07</td>
</tr>
</tbody>
</table>

- Error estimates include:
 - uncertainties in the potentials (static and order 1/m)
 - uncertainties from matching to experimental spectra
Bottomonium spectrum

- Tightly bound $\eta_b(1S)$ and $\Upsilon(1S)$ states are most sensitive to $1/m$-effects.

- Hyperfine effects (h.f.) added phenomenologically (one-gluon exchange) with $\alpha_s^{\text{eff}} = 0.3$.

 ... (work in progress) to be substituted by the full $1/m^2$ potential.

- String tension $\sigma = 1.01$ GeV/fm.

- Different strategies needed above $B\bar{B}$ threshold.

\begin{figure}
\centering
\includegraphics[width=\textwidth]{spectrum_graph.png}
\caption{Mass dependence of the heavy quark potential.}
\end{figure}
Spectroscopy

Charmonium spectrum

- **Downward shift from** $V^{(1)}$ **in the** 1S states (η_c and J/ψ) **to large** $1/m^2$ **effects significant**

- Hyperfine effects (h.f.) added phenomenologically (one-gluon exchange) with $\alpha_s^{\text{eff}} = 0.3$

 ... (work in progress) to be substituted by the full $1/m^2$ potential

- String tension $\sigma = 1.01$ GeV/fm

- Different strategies needed above $D\bar{D}$ threshold

Table:

<table>
<thead>
<tr>
<th>Mass [GeV]</th>
<th>D ¯D-threshold $\eta_c(2S)$</th>
<th>$\psi(2S)$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$2S$</td>
<td>$\psi(1S)$</td>
</tr>
<tr>
<td></td>
<td>$3S_1$</td>
<td>$\eta_c(1S)$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mass [GeV]</th>
<th>static</th>
<th>$+1/m$</th>
<th>+h.f.</th>
<th>experiment</th>
</tr>
</thead>
<tbody>
<tr>
<td>$1S_0$</td>
<td>3.1</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
</tr>
<tr>
<td>$1S_1$</td>
<td>3.3</td>
<td>3.2</td>
<td>3.2</td>
<td>3.2</td>
</tr>
</tbody>
</table>

Graphs:

- Mass dependence of the heavy quark potential

Author: Alexander Laschka

Presentation: Mass dependence of the heavy quark potential

Conference: Hadron 2011
Summary

- Heavy quark-antiquark potential from QCD (perturbative QCD ↔ lattice QCD)
- Excellent matching in r-space up to order $1/m$
- Spectroscopy at order $1/m$
 - Works well for bottomonium
 - Less successful for charmonium ($1/m^2$ effects sizeable: work in progress)
- Quark masses can be extracted

<table>
<thead>
<tr>
<th>MS masses [GeV]</th>
<th>static</th>
<th>static + $1/m$</th>
</tr>
</thead>
<tbody>
<tr>
<td>charm quark</td>
<td>1.23 ± 0.04</td>
<td>$1.28_{-0.06}^{+0.07}$</td>
</tr>
<tr>
<td>bottom quark</td>
<td>4.20 ± 0.04</td>
<td>$4.18_{-0.04}^{+0.05}$</td>
</tr>
</tbody>
</table>

Thank you for your attention!