Status of X, Y, Z States

Simon Eidelman

Budker Institute of Nuclear Physics, Novosibirsk, Russia

(For Belle, BaBar, CDF Collaborations)

Outline

2. Y

1. X

- $3. \ Z$
- 4. Search for exotics in $\Upsilon(1S)$ decays
- 5. Conclusions

Introduction

- Conventional states C. Patrignani, theory R. Springer
- The era of X, Y, Z (charmonium-like) states started in 2003 when Belle discovered X(3872)
- These states have mass above the open charm threshold, but mysteriously open charm decay modes are suppressed
- About 20 states belong to this family and usually do not find a place in the charmonium model
- Many models: tetraquark, hybrid, molecules, hadrocharmonium or, alternatively, effects of close thresholds, coupled channels and rescattering
- Very important: readily accepted by PRL and have hundreds of citations (more than to CP violation)

X(3872) General

- A narrow state discovered by Belle in $B^+ \to J/\psi \pi^+ \pi^- K^+$, S.-K.Choi et al.,PRL 91, 262001 (2003)
- Confirmed by BaBar, B.Aubert et al., PRL 93, 041801 (2004); at Tevatron: CDF, D.Acosta et al., PRL 93, 072001 (2004) and D0, V.M.Abazov et al., PRL 93, 162002 (2004)
- Charged partner not found by BaBar, B.Aubert et al., PRD 71, 031501 (2005)
- Helicity analysis of CDF in $X \to J/\psi \pi^+ \pi^-$ gives $J^{PC} = 1^{++}, 2^{-+},$ A.Abulencia et al., PRL 98, 132002 (2007)
- Study of the 3π invariant mass spectrum in $X \to J/\psi\omega$ slightly favors $J^{PC} = 2^{-+}$, BaBar, P.del Amo Sanchez et al., PRD 82, 132002 (2010)
- Mass in $D^0 \bar{D}^{*0}$ higher than in $J/\psi \pi^+ \pi^- 2$ states? Belle, G.Gokhroo et al., PRL 97, 162002 (2006), BaBar, B.Aubert et al., PRD 77, 011102 (2008)

Study of
$$X(3872) \rightarrow D^{*0}\overline{D}^0 - \text{II}$$

Group	$\int \mathcal{L} dt$, fb ⁻¹	Mass, MeV
Belle–2006	414	$3875.2 \pm 0.7^{+0.3}_{-1.6} \pm 0.8$
BaBar-2008	347	$3875.1^{+0.7}_{-0.5} \pm 0.5$
Belle–2010	605	$3872.9^{+0.6+0.4}_{-0.4-0.5}$

- A 6.4 σ signal is observed in $D^{*0} \to D^0 \pi^0, \ D^0 \gamma$
- $M_X M_{D^0 \bar{D}^{*0}} = (1.1^{+0.6+0.1}_{-0.4-0.3}) \text{ MeV}$
- The fitted M_X is 2.3σ lower than that of BaBar

Belle used $772 \times 10^6 \ B\bar{B}$ to study $X(3872) \to \pi \pi J/\psi$

- After selection 151 ± 15 events of $B^+ \to K^+ X$ and 21.0 ± 5.7 events of $B^+ \to K^0 X$
- Separate fits show very close mass values with $\Delta M = (-0.69 \pm 0.97 \pm 0.13) \text{ MeV} - \text{Belle}$ $\Delta M = (2.7 \pm 1.6 \pm 0.4) \text{ MeV} - \text{BaBar}$
- $M = (3871.84 \pm 0.27 \pm 0.19) \text{ MeV} \text{Belle}$ $M = (3871.61 \pm 0.16 \pm 0.19) \text{ MeV} - \text{CDF}$

V. Bhardwaj et al., arXiv:1105.0177

S.Eidelman, BINP

p.10/32

Study of $X(3872) \rightarrow J/\psi\gamma$ and Search for $X(3872) \rightarrow \psi'\gamma - III$

June 13-17, 2011

of $X(38)$	$(72) \rightarrow J/\psi\gamma$ ar	nd Search for $X(3872)$ -	$\rightarrow \psi' \gamma$
Decay	Yield (Y)	Branching fraction	$\mathcal{S}\left(\sigma ight)$
$B \to \chi_{c1}($	$\rightarrow J/\psi\gamma)K$	$\mathcal{B}~(imes 10^{-4})$	
K^+	2308^{+53}_{-52}	$4.94 \pm 0.11 \pm 0.33$	79
K^0	542 ± 24	$3.78^{+0.17}_{-0.16} \pm 0.33$	37
$B \to \chi_{c2}($	$\rightarrow J/\psi\gamma)K$	$\mathcal{B}~(imes 10^{-5})$	
K^+	$32.8^{+10.9}_{-10.2}$	$1.11^{+0.36}_{-0.34} \pm 0.09$	3.6
K^0	$2.8^{+4.7}_{-3.9}$	$0.32^{+0.53}_{-0.44} \pm 0.03 \ (< 1.5)$	0.7
$B \to X(3$	$872)(\rightarrow J/\psi\gamma)K$	$\mathcal{B}~(imes 10^{-6})$	
K^+	$30.0^{+8.2}_{-7.4}$	$1.78^{+0.48}_{-0.44} \pm 0.12$	4.9
K^0	$5.7^{+3.5}_{-2.8}$	$1.24^{+0.76}_{-0.61} \pm 0.11 \ (< 2.4)$	2.4
$B \to X(3)$	$(872)(\rightarrow \psi'\gamma)K$	$\mathcal{B}~(imes 10^{-6})$	
K^+	$5.0^{+11.9}_{-11.0}$	$0.83^{+1.98}_{-1.83} \pm 0.44 \ (< 3.45)$	0.4
K^0	$1.5^{+4.8}_{-3.9}$	$1.12^{+3.57}_{-2.90} \pm 0.57 \ (< 6.62)$	0.3

Summary of $X(3872) \rightarrow J/\psi(\psi')\gamma$ Studies

Results on $\mathcal{B}(B^+ \to K^+X(3872)) \cdot \mathcal{B}(X(3872) \to R\gamma), 10^{-6}$

Group	Belle	BaBar
$\int \mathcal{L} dt$, fb ⁻¹	711	424
$R = J/\psi$	$1.78^{+0.48}_{-0.44}\pm0.12$	$2.8\pm0.8\pm0.1$
$R = \psi$	< 3.45	$9.5\pm2.7\pm0.6$

From the absence of $X(3872) \rightarrow \psi' \gamma$ it may not have a large $c\bar{c}$ admixture with a $D^{*0}\bar{D}^0$ molecular component

Y(4260) General

- Discovered by BaBar in $e^+e^- \rightarrow J/\psi \pi^+\pi^-\gamma$ in B.Aubert et al., PRL 95, 142001 (2005)
- Confirmed by CLEO both with ISR and a direct scan in Q.He et al., PRD 74, 091104 (2006), T.Coan et al., PRL 96, 162003 (2006)
- Observed by Belle with ISR, C.Z.Yuan et al., PRL 99, 182004 (2007)
- Possibly seen in $B^- \to J/\psi \pi^+ \pi^- K^-$ by BaBar, B.Aubert et al., PRD 73, 011101 (2006)
- $J^{PC} = 1^{--}, \ M = 4263^{+8}_{-9} \text{ MeV}, \ \Gamma = 95 \pm 14 \text{ MeV}, \ \Gamma_{e^+e^-} \mathcal{B}(J/\psi \pi^+\pi^-) = 5.9^{+1.2}_{-0.9} \text{ eV}$
- No serious signal in any other decay mode $(D^{(*)}\bar{D}^{(*)}, D_s^{(*)}\bar{D}_s^{(*)}, \psi'\pi^+\pi^-, \ldots)$ the position of Y(4260) coincides with a dip in R

BaBar used a data sample of 454 fb⁻¹, B.Aubert et al., 0808.1543

$$\begin{split} M &= 4252 \pm 6^{+2}_{-3} \text{ MeV}, \ \Gamma = 105 \pm 18^{+4}_{-6} \text{ MeV}, \ \Gamma_{e^+e^-} \mathcal{B}(J/\psi \pi^+\pi^-) = 7.5^{+0.9}_{-0.8} \text{ eV} \\ \text{Does not confirm } Y(4050) \text{ observed by Belle with 548 fb}^{-1}: \\ \Gamma_{e^+e^-} \mathcal{B}(J/\psi \pi^+\pi^-) < 0.7 \text{ eV at } 90\% \text{CL} \end{split}$$

As previously observed, $m_{\pi^+\pi^-}$ is not described by phase space

June 13-17, 2011

Munich

Y(4140) at CDF – I

- First evidence (3.8 σ) from CDF as $B^+ \to Y(4140)K^+$, $Y(4140) \to J/\psi\phi$, $N = 14 \pm 5$, $M = (4143.0 \pm 2.9 \pm 1.2)$ MeV, $\Gamma = (11.7^{+8.3}_{-5.0} \pm 3.7)$ MeV, T.Aaltonen et al., PRL 102, 242002 (2009)
- Belle searched for Y(4140) in B decays with a negative, but not inconsistent with CDF result, J.Brodzicka, LP-09
- Belle also didn't see Y(4140) in $\gamma\gamma$, but found Y(4350) with 3.2σ significance
- In 1101.0658 CDFII reports x2.2 (6 fb⁻¹) and confirms Y(4140)
- As before, they use $J/\psi \to \mu^+\mu^-$ and $\phi \to K^+K^-$

Two significant structures seen!

p.20/32

Y(4140) at CDF – IV

Parameters of two J/ϕ states

State	Events	Mass, MeV	Width, MeV	Sign. (σ)
1	$19\pm 6\pm 3$	$4143.4^{+2.9}_{-3.0}\pm0.6$	$15.3^{+10.4}_{-\ 6.1}\pm2.5$	5.0
2	22 ± 8	$4274.4^{+8.4}_{-6.7} \pm 1.9$	$32.3^{+21.9}_{-15.3} \pm 7.6$	3.1

 $\mathcal{B}(B^+ \to Y(4140)K^+)/\mathcal{B}(B^+ \to J/\psi\phi K^+) = 0.149 \pm 0.039 \pm 0.024$ The first state of two heavy quarkonia - $c\bar{c}s\bar{s}$

Charged Z States

- No news on Z(4430) seen by Belle in $B \to K\pi^+\psi'$ with 605 fb⁻¹, S.-K.Choi et al., PRL 100, 142001 (2008)
- Not seen by BaBar with 413 fb⁻¹, also in $J/\psi\pi^+$ decay, B.Aubert et al., PRD 80, 031104 (2009)
- Confirmed by Belle in Dalitz plot reanalysis of the same data sample, R.Mizuk et al., PRD 80, 031104 (2010), $M = 4443^{+15+19}_{-12-13}$ MeV, $\Gamma = 107^{+86+74}_{-43-56}$ MeV
- No statistical inconsistency between Belle and BaBar
- With the same 605 fb⁻¹ Belle observes in B^0 decays two $\chi_{c1}\pi^-$ states Z(4050) and Z(4350), R.Mizuk et al., PRD 80, 031104 (2010)
- Non-zero charge \Rightarrow exotic, non- $q\bar{q}$ nature

Observation of Charged $Z_b(10610)$ and $Z_b(10650) - I$

Dalitz plot analysis of $\Upsilon(5S)$ decays to $h_b(1P)\pi^+\pi^-, \ h_b(2P)\pi^+\pi^-,$ $\Upsilon(1S)\pi^+\pi^-, \ \Upsilon(2S)\pi^+\pi^-, \ \Upsilon(3S)\pi^+\pi^$ shows the resonant structure in $\Upsilon(h_b) - Z_b.$

 $h_b(1P)$ and $h_b(2P)$ decay into $Z_b(10610)$ and $Z_b(10650)$

S.Eidelman, BINP

p.25/32

		Fit resu	ults		B
		[pre	eliminary]		BELLE
Final state	$\Upsilon(1S)\pi^+\pi^-$	$\Upsilon(2S)\pi^+\pi^-$	$\Upsilon(3S)\pi^+\pi^-$	$h_b(1P)\pi^+\pi^-$	$h_b(2P)\pi^+\pi^-$
$M(Z_b(10610)), {\rm MeV}/c^2$	$10609 \pm 3 \pm 2$	$10616 \pm 2^{+3}_{-4}$	$10608 \pm 2^{+5}_{-2}$	$10605.1 \pm 2.2^{+3.0}_{-1.0}$	$10596 \pm 7^{+5}_{-2}$
$\Gamma(Z_b(10610)), {\rm MeV}$	$22.9 \pm 7.3 \pm 2$	$21.1 \pm 4^{+2}_{-3}$	$12.2\pm1.7\pm4$	$11.4^{+4.5}_{-3.9}{}^{+2.1}_{-1.2}$	$16{}^{+16}_{-10}{}^{+13}_{-4}$
$M(Z_b(10650)), {\rm MeV}/c^2$	$10660 \pm 6 \pm 2$	$10653 \pm 2 \pm 2$	$10652 \pm 2 \pm 2$	$10654.5 \pm 2.5 {+1.0 \atop -1.9}$	$10651 \pm 4 \pm 2$
$\Gamma(Z_b(10650)), { m MeV}$	$12 \pm 10 \pm 3$	$16.4 \pm 3.6^{+4}_{-6}$	$10.9 \pm 2.6^{+4}_{-2}$	$20.9^{+5.4}_{-4.7}{}^{+2.1}_{-5.7}$	$12^{+11}_{-9}{}^{+8}_{-2}$
Rel. amplitude	$0.59 \pm 0.19 ^{+0.09}_{-0.03}$	$0.91 \pm 0.11 \substack{+0.04 \\ -0.03}$	$0.73 \pm 0.10^{+0.15}_{-0.05}$	$1.8{}^{+1.0}_{-0.7}{}^{+0.1}_{-0.5}$	$1.3^{+3.1}_{-1.1}{}^{+0.4}_{-0.7}$
Rel. phase, degrees	$53 \pm 61^{+5}_{-50}$	$-20 \pm 18^{+14}_{-9}$	$6 \pm 24^{+23}_{-59}$	$188^{+44}_{-58}{}^{+4}_{-9}$	$255^{+56}_{-72}{}^{+12}_{-183}$

Masses, widths, relative amplitudes are consistent Relative phases are swapped for Y and h_b final states ← expectation from a 'molecular' model

Z _b (10610)	Z _b (10650)
M=10608.4±2.0 MeV	M=10653.2±1.5 MeV
Γ=15.6±2.5 MeV	Γ=14.4 ± 3.2 MeV

S.Eidelman, BINP

1

Probabilities at which different J^P hypotheses are disfavored compared to 1⁺

IP		$Z_b(10610)$			$Z_b(10650)$	
J-	$\Upsilon(2S)\pi^+\pi^-$	$\Upsilon(3S)\pi^+\pi^-$	$h_b(1P)\pi^+\pi^-$	$\Upsilon(2S)\pi^+\pi^-$	$\Upsilon(3S)\pi^+\pi^-$	$h_b(1P)\pi^+\pi^-$
1-	3.6σ	0.3σ	0.3σ	3.7σ	2.6σ	2.7 σ
2+	4.3σ	3.5σ	4.9 -	4.4σ	2.7 σ	0.1 -
2^{-}	2.7 σ	2.8 σ	4.3σ	2.9σ	2.6σ	2.1 σ

1+ assignment is favorable. 1-, 2+ ,2- are disfavored at typically 3σ level.

S.Eidelman, BINP

1

Search for Charmonium(like) States in $\Upsilon(1S)$ Decays – I

Belle searched for $\Upsilon(1S) \to R\gamma$ using $102 \times 10^6 \Upsilon(1S)$ events

C.P. Shen et al., Phys. Rev. D82, 051504 (2010)

Upper Limits on $\mathcal{B}(\Upsilon(1S) -$	$R\gamma$) at 90%CL
State (R)	$\mathcal{B}_R, 10^{-5}$
$\chi_{c0}~(J/\psi\gamma)$	65
$\chi_{c1}~(J/\psi\gamma)$	2.3
$\chi_{c2}~(J/\psi\gamma)$	0.76
$\eta_c \ (5 \ \text{modes})$	5.7
$X(3872) \to \pi^+ \pi^- J/\psi$	0.16
$X(3872) \to \pi^+ \pi^- \pi^0 J/\psi$	0.28
$X(3915) \rightarrow \omega J/\psi$	0.30
$Y(4140) \rightarrow \phi J/\psi$	0.22

No contradiction with Y.-J. Gao et al., hep-ph/0701009 No excited charmonium states below 4.8 GeV Similar analysis is in progress for $158 \times 10^6 \ \Upsilon(2S)$ events

Conclusions

- Theoretical interpretation very far from final
- The exotic family is proliferating, "babies" are heavy: Y_b, Z_b(10610), Z_b(10650)
- In many cases detailed analysis is limited by statistics, a breakthrough expected at SuperB-factories, PANDA and LHC
- LHCb: $M_{X(3872)} = 3871.96 \pm 0.46 \pm 0.10$ MeV
- About 20 new states are not yet assigned
- Enrico Fermi: If I could remember the names of all these particles, I'd be a botanist

S.Eidelman, BINP

p.34/32

S.Eidelman, BINP

p.39/32

