Highlights from **BESIII**

Hai-Bo Li for BESIII Collaboration Institute of High Energy Physics Beijing, China

XIV International Conference on Hadron Spectroscopy June 13 – 17, 2011 *Künstlerhaus, in München*, Germany

June 15, 2011

Hai-Bo Li (IHEP)

Outline

- Status of BEPCII/BESIII
- Results from Charmonium data samples
- 2010-11: First open charm runs
- Charm Physics: advantage near threshold
- Conclusion

BESIII - physics using "charm"

June 15, 2011

Charmonium physics:

- Spectroscopy
- transitions and decays
- Light hadron physics:
 - meson & baryon spectroscopy
 - glueball & hybrid
 - two-photon physics
- e.m. form factors of nucleon Charm physics:
 - (semi)leptonic + hadronic decays
 - decay constant, form factors
 - CKM matrix: Vcd, Vcs
 - D⁰-D⁰bar mixing and CP violation
 - rare/forbidden decays

Tau physics:

- Tau decays near threshold
- tau mass scan ...and many more.

Charmonium spectroscopy after the B-factories

Satellite view of BEPCII /BESIII

South

BESIII detector 2004: start BEPCII construction 2008: test run of BEPCII 2009-now: BECPII/BESIII data taking

June 15, 2011

Hai-Bo Li (IHEP)

Beam energy: 1.0-2.3 GeV **Design Luminosity:** 1×10^{33} cm⁻²s⁻¹ **Optimum energy: 1.89 GeV Energy spread:** 5.16 × 10⁻⁴ No. of bunches: **93 Bunch length:** 1.5 cm **Total current: 0.91** A **Circumference**: 237m

BESIII Detector

BESIIII detector: all new !

CsI calorimeter Precision tracking Time-of-flight + dE/dx PID

Magnet: 1 T Super conducting

Data samples

- So far BESIII has collected :
 - 2009: 225 Million J/ ψ
 - 2009: 106 Million ψ'
 - 2010-11: 2.9 fb⁻¹ ψ (3770) (3.5 × CLEO-c 0.818fb⁻¹)
 - May 2011: 0.5fb⁻¹ @4010 MeV (one month) for Ds and XYZ spectroscopy
- BESIII will also collect:
 - more J/ψ , ψ' , $\psi(3770)$
 - data at higher energies

 (for XYZ searches, R scan and Ds physics)

June 15, 2011

Recent ψ (3770) running

6 groups from Germany BESIII Collaboration

Released results of BESIII

- Charmonium Spectroscopy and Transitions
 - Properties of the h_c (PRL 104, 132002 (2010))
 - $\Psi' \rightarrow \gamma \gamma J/\Psi$ (submitted soon)
- Charmonium Decays

10 papers published

- $\chi_{cJ} \rightarrow \pi^0 \pi^0$, $\eta \eta$ (PRD 81, 052005 (2010))
- $\chi_{cJ} \rightarrow \gamma \rho$, $\gamma \omega$, $\gamma \phi$ (PRD83,112005(2011))
- $\chi_{cJ} \rightarrow \omega \omega$, $\phi \phi$, $\omega \phi$ (submitted to PRL)
- Ψ[']→ γπ⁰, γ η, γ η ' (PRL 105, 261801 (2010))
- $\chi_{cJ} \rightarrow 4\pi^0$ (PRD 83, 012006 (2011))
- Observation of $\chi_{cJ} \rightarrow ppK^{+}K^{-}$ (accepted by PRD)
- Light Quark States
 - $-a_0(980) f_0(980)$ mixing (PRD 83, 032003 (2011))
 - $\eta' \rightarrow \eta \pi^+ \pi^-$ matrix element (*PRD 83, 012003 (2011*))
 - X(1860) in J/ $\Psi \rightarrow \gamma$ (pp) (Chinese Physics C 34, 4 (2010))
 - X(1835) in J/ $\Psi \rightarrow \gamma (\eta' \pi^+ \pi^-)$ (PRL 106, 072002 (2011))
 - X(1870) in J/ $\Psi \rightarrow \omega$ ($\eta \pi^+\pi^-$) (submitted soon)

More than 20 analyses are under internal review!

June 15, 2011

Hai-Bo Li (IHEP)

Property of h_c (1p1)

Observation of h_c in inclusive reaction

PRL104, 132002 (2010)

$h_c(1P1)$ in $\psi' \rightarrow \pi^0 h_c$, $h_c \rightarrow \gamma \eta_c$, $\eta_c \rightarrow X_i$ (exclusive)

 $\psi' \rightarrow \pi^0 h_C, h_C \rightarrow \gamma \eta_C,$ η_C is reconstructed exclusively with 16 decay modes

Black from PDG2010, blue from estimation of $\psi' \rightarrow \gamma \eta_c$

For detail see Quarkonia session: Liangliang Wang's talk on June 13

16 Decay modes	BR(η _c →X)	
$\eta_c \rightarrow pp^-$	~0.13%	
$\eta_c \rightarrow \pi^+ \pi^- pp^-$	~0.45%	
$\eta_c \rightarrow 2(\pi^+\pi^-)$	~1.20%	
$\eta_c \rightarrow 2K^+2K^-$	~0.16%	
$\eta_c \rightarrow \pi^+ \pi^- k^+ k^-$	~1.50%	
$\eta_c \rightarrow 3(\pi^+\pi^-)$	~1.50%	
$\eta_c \rightarrow K^+ K^- 2(\pi^+ \pi^-)$	~0.71%	
$\eta_c \rightarrow k^+ k^- \pi^0$	~1.17%	
$\eta_c \rightarrow pp^{bar} \pi^0$	~0.18%	
$\eta_c \rightarrow k_s kp;$	~2.33%	
$\eta_c \rightarrow \mathbf{k}_s k 3 \pi$	~2.40%	
$η_c \rightarrow \pi^+ \pi^- \eta; \eta \rightarrow \gamma \gamma$	~3.27%	
η _c → k ⁺ k ⁻ η	~0.57%	
$\eta_c \rightarrow 2(\pi^+\pi^-)\eta$	~2.70%	
$\eta_c \rightarrow \pi^+ \pi^- \pi^0 \pi^0$	~2.40%	
$\eta_c \rightarrow 2(\pi^+\pi^-)\pi^0\pi^0$	~11.0%	

π^{0} recoil mass in $h_{c} \rightarrow \gamma \eta_{c}$, $\eta_{c} \rightarrow X_{i}$

Simultaneous fit to π^0 recoiling mass in 106M ψ' sample (preliminary results): χ^2 /d.o.f. = 32/46 June 15, 2011

Consistent with **BESIII** inclusive results PRL104,132002(2010) **CLEOc exlusive results** $M(h_{c})=3525.21\pm0.27\pm0.14 MeV/c^{2}$ 136 ± 14 PRL101, 182003(2008)

Simultaneous fit with r-BW by considering the interference between η_c and non- η_c decays, as well as the energy dependence of phase space:

mass: 2984.4±0.5_{stat}±0.6_{sys} MeV/c² width: 30.5±1.0_{stat}±0.9_{sys} MeV 2.35±0.05_{stat}±0.04_{svs} rad June 15, 2011

 ϕ : relative phase between η_c decay and non-resonant component under the signal region by assuming all non- η_c is O⁻⁺, and an universal phase Hai-Bo Li (IHEP) for different modes is used. 18

Comparison of the mass and width for $\eta_{\rm c}$

The world average in PDG2010 was using earlier results

BESIII results include both stat. and syst. errors, which is the most precision measurement, the interference between η_c decay and non-resonance is important.

For detail see Quarkonia session on June 13: Liangliang Wang June 15, 2011 Hai-Bo Li (IHEP)

Observation of $\eta_c(2S)$ in $\psi' \rightarrow \gamma \eta_c(2S), \eta_c(2S) \rightarrow K_s K \pi$

Measurement of $J/\psi \rightarrow p\bar{p}$, $n\bar{n}$

•
$$p \bar{p}$$
 amplitude A_{γ}^{p} from BABAR data
• $n\bar{n}$ amplitude A_{γ}^{n} from FENICE data
• $A_{\gamma}^{p} - A_{\gamma}^{n}$ relative phase from pQCD
• H
 $B(J/\psi \rightarrow n\bar{n}) = \left| \frac{A_{3g} + A_{\gamma}^{n}}{A_{3g} + A_{\gamma}^{p}} \right|^{2} B(J/\psi \rightarrow p \bar{p}) = (1.4 \pm 0.2) \times 10^{-3}$
• BESII at BEPC [PLB591,42]: $BR(J/\psi \rightarrow p \bar{p}) = (2.26 \pm 0.01 \pm 0.14) \times 10^{-3}$
• FENICE at ADONE [PLB444,111]: $BR(J/\psi \rightarrow n\bar{n}) = (2.2 \pm 0.4) \times 10^{-3}$

$$\begin{array}{ll} B(J/\psi \rightarrow p \ \overline{p}) \sim B(J/\psi \rightarrow n \ \overline{n}) & \Longrightarrow \text{ large } A_{3g}^N - A_{\gamma}^N \text{ relative phase?} \\ & \text{With 2.2 million } J/\psi \text{ at BESIII, with help of EMC,} \\ & \text{we can access neutron-anti-neutron final states} \\ & \text{June 15, 2011} & \text{Hai-Bo Li (IHEP)} \end{array}$$

21

Preliminary results: $J/\psi \rightarrow p\bar{p}$, $n\bar{n}$

Anti-neutron identifications:

EMC energy deposit: 0.6<E(anti-neutron)<2.0 GeV Comparison for anti-neutron in $J/\psi \rightarrow n\overline{n}$ and $p\overline{n}\pi^{-}$ Angle between n and recoiling direction of \overline{n}

Br(J/ ψ →pp) = (2.112±0.004±0.027)×10⁻³ PDG: Br(J/ ψ →pp) = (2.17±0.07)×10⁻³

 $Br(J/\psi \rightarrow n\overline{n}) = (2.07 \pm 0.01 \pm 0.14) \times 10^{-3}$ PDG: $Br(J/\psi \rightarrow n\overline{n}) = (2.2 \pm 0.4) \times 10^{-3}$ **Br(J/\psi \rightarrow p\bar{p})** ~ **Br(J/\psi \rightarrow n\bar{n})** suggests a large angle (~90°) between strong and EM amplitudes!

Preliminary results: $J/\psi \rightarrow p\bar{p}$, $n\bar{n}$

Anti-neutron identifications:

EMC energy deposit: 0.6 This technique tells us that we Comparison for anti-neu can measure neutron-antineutron Angle between n and rectross section between 2.0-4.0 GeV

Br($J/\psi \rightarrow p\overline{p}$) = (2.112±(PDG: Br($J/\psi \rightarrow p\overline{p}$) = (2. on Jun

by using scan data, which is important. See MAGGIORA, Marco in Quarkonia session on June 13

 $Br(J/\psi \rightarrow n\overline{n}) = (2.07 \pm 0.01 \pm 0.14) \times 10^{-3}$ PDG: $Br(J/\psi \rightarrow n\overline{n}) = (2.2 \pm 0.4) \times 10^{-3}$ between strong and EM amplitudes!

Evidence for ψ' decays into $\gamma\pi$ and $\gamma\eta$

Some surprises

Difference?: Other processes contributing? Related to pπ puzzle, ... ??

Hai-Bo Li (IHEP) Q. Zhao, PLB697(2011)52 25

June 15, 2011

η(1405) in $J/ψ \rightarrow \gamma f_0(980)\pi^0, f_0(980) \rightarrow \pi\pi$

Helicity analysis indicates that peak at 1400MeV is from $\eta(1405) \rightarrow f_0(980)\pi^0$ not from $f_1(1420)$:

First observation of $\eta(1405) \rightarrow f_0(980)\pi^0$ (isospin violated decays) and $J/\psi \rightarrow \gamma f_0(980)\pi^0$ $\begin{array}{l} \textbf{Preliminary results:} \\ Br(J/\psi \to \gamma \eta (1405) \to \gamma f_0 \pi^0 \to \gamma \pi^0 \pi^+ \pi^-) \\ = (1.48 \pm 0.13 (stat.) \pm 0.17 (sys.)) \times 10^{-5} \\ Br(J/\psi \to \gamma \eta (1405) \to \gamma f_0 \pi^0 \to \gamma \pi^0 \pi^0 \pi^0) \\ = (6.99 \pm 0.93 (stat.) \pm 0.95 (sys.)) \times 10^{-6} \end{array}$

Hai-Bo Li (IHEP)

New results on $\eta' \rightarrow 3\pi$ in $J/\psi \rightarrow \gamma \pi \pi \pi$

Hai-Bo Li (IHEP)

Confirmation of X(1835) and two new structures

X(1055)	$1030.0 \pm 3.0 + -2.1$	190.1 ± 9.0^{-36}	~20 0
X(2120)	$2122.4 \pm 6.7^{+4.7}_{-2.7}$	$83 \pm 16^{+31} _{-11}$	7.2 σ
X(2370)	$2376.3 \pm 8.7^{+3.2}_{-4.3}$	$83 \pm 17^{+44}_{-6}$	6.4 σ

An amplitude analysis could help with interpretation for the additional new structures! June 15, 2011 Hai-Bo Li (IHEP)

X(1835) consistent with O⁻⁺, but the others are not excluded

0.4

0.6

0.8

 $|\cos\theta_{\gamma}|$

1.0

1000

0.0

0.2

What's the nature of new structures?

PRD73,014516(2006) Y.Chen et al

For detail see Light meson session: Hongwei Liu's talk on June 17

June 15, 2011

r_o Mg

✓It is the first time resonant structures are observed in the 2.3 GeV/c² region, it is interesting since:

LQCD predicts that the lowest lying pseudoscalar glueball: around 2.3 GeV/c².

 $J/\psi \rightarrow \gamma \pi \pi \eta'$ decay is a good channel for finding 0-+ glueballs.

Nature of X(2120)/X(2370) pseudoscalar glueball ? η/η' excited states?

PRD82,074026,2010 J.F. Liu, G.J. Ding and M.L.Yan PRD**83:114007,2011**

(J.S. Yu, Z.-F. Sun, X. Liu, Q. zhao), and more...

Hai-Bo Li

X(1870) in J/ $\psi \rightarrow \omega X$, X $\rightarrow a_0^{\pm}(980)\pi^{\mp}$

Preliminary results on N* baryon in $\psi' \rightarrow \eta p \overline{p}$ decay

June 15, 2011

Hai-Bo Li (IHEP)

Running plan

- The luminosity of BEPCII is better than expected.
- Data taking for open charm:
 - $\psi(3770)$: 2.9 fb⁻¹ (2010 and 2011)
 - 4010 MeV : 0.5 fb⁻¹ in May 2011 for Ds physics and XYZ

Year	Running
2012	J/ ψ : 1 billion / ψ (25): 0.5 billion (approved)
2013	4170 MeV: Ds decay + R scan (E > 4 GeV)
2014	ψ(25)/τ / R scan (E > 4 GeV)
2015	ψ(3770): 5-10 fb ⁻¹ (our final goal)

Red: be approved by BESIII Collaboration

Prospect of charm physics at BESIII

Advantage of open charm at threshold

e⁺e⁻ Colliders@threshold: CLEO-c, BESIII, Super-taucharm

 $e^+e^- \rightarrow \psi(3770) \rightarrow D^0\overline{D^0} \ [C = -1] \quad \text{OR} \quad e^+e^- \rightarrow \gamma^* \rightarrow D^0\overline{D^0}\gamma \ [C = +1]$

Good for charm flavor physics:

- Threshold production: clean
- Known initial energy and quantum numbers
- Both D and Dbar fully reconstructed (double tag)
- Absolute measurements

Charm role in flavor physics

precision QCD calculations tested with *precision* charm data at threshold
→ theory errors of a few % on B system
decay constants & semileptonic form factors

over-constrain V_{CKM} Inconsistency \rightarrow New Physics

June 15, 2011

Charm decay measurements decay constants form factors V_{CKM} clean extraction validate QCD.

Prospects for Charm at BESIII

Look for the size of the statistics/systematic/FSR errors for precision measurements at BESIII after CLEO-c.

For Ds physics, BESIII are taking data at both 4010 and 4170 MeV: 4010 MeV (clean single tag, lower cross section 0.3 nb) → BESIII 0.5 fb⁻¹ 4170MeV (dirty single tag, maximum cross section 0.9 nb) → CLEO-c 0.6 fb⁻¹

Significant gains will be made with increased luminosity at BESIII.

Coherence physics \bigcirc threshold

b, s, d

W

For coherent process: $e^+e^- \rightarrow \psi^" \rightarrow D^0\overline{D}^0$ The initial state C=-1 $\psi_{-} = \frac{1}{\sqrt{2}} \left(\left| D^{0} \right\rangle \right| \overline{D}^{0} \right\rangle - \left| \overline{D}^{0} \right\rangle \left| D^{0} \right\rangle \right) \quad \begin{array}{c} \hat{C} \left| D^{0} \right\rangle = \left| \overline{D}^{0} \right\rangle \\ \hat{C} \left| \overline{D}^{0} \right\rangle = \left| D^{0} \right\rangle \end{array}$ The coherent amplitude $\Gamma_{ii}^{2} = \left| \left\langle i \mid D^{0} \right\rangle \left\langle j \mid \overline{D^{0}} \right\rangle \mp \left\langle j \mid D^{0} \right\rangle \left\langle i \mid \overline{D^{0}} \right\rangle \right|$ $\frac{\left\langle K^{-}\pi^{+} \middle| \overline{D^{0}} \right\rangle}{\left\langle K^{-}\pi^{+} \middle| D^{0} \right\rangle} = -r_{K\pi}e^{i}$ $\delta_{\kappa\pi}$ connects measurements June 15, 2011 of v and v'

$x \equiv \frac{\Delta m}{\Gamma} = \frac{m_2 - m_1}{\Gamma}$ $x \equiv \frac{\Delta m}{\Gamma} = \frac{m_2 - m_1}{\Gamma}$ $y \equiv \frac{\Delta \Gamma}{2\Gamma} = \frac{\Gamma_2 - \Gamma_1}{2\Gamma}$ $\Gamma = \frac{\Gamma_1 + \Gamma_2}{2}$ $V \equiv \frac{\Delta \Gamma}{2\Gamma} = \frac{\Gamma_2 - \Gamma_1}{2\Gamma}$

✓ Strong phase can be accessed, will be helpful for mixing measurements at super-B factories:

Sensitivity on x will be improved by a factor of 3

Uncertainty of γ due to unknown relative phase on Dalitz decays $D^0 \rightarrow Ks h^+h^-$ will be reduced to less than 1^0 .

✓ CP violation in D sector : 10⁻³ Hai-Bo Li (IHEP)

Sensitivity of rare D decays at BESIII

With 5-10fb⁻¹
$$@\psi(3770)$$

BESIII will provide 10⁻⁷ -10⁻⁸ sensitivity.

Conclusion

- Huge data samples collected for Charmonium decays at BESIII
- The first observation of η_c (25) in $\psi' \rightarrow \gamma \eta_c$ (25) decay
- Precision measurements of $\eta_c(1S)$ parameters in $\psi' \rightarrow \gamma \eta_c(1S)$
- Confirmation of X(1835) in $J/\psi \rightarrow \gamma \eta' \pi^+ \pi^-$,
- Observation of two new structures X(2120) and X(2370) in $J/\psi \rightarrow \gamma \pi \pi \eta'$ decays
- Observation of new structure X(1870) in $J/\psi \rightarrow \omega \pi \pi \eta$
- Charm near threshold undertake complementary studies of D mixing and CPV, and unique test of QCD techniques
- We expect rich physics results in the coming years from BESIII.

June 15, 2011

Hai-Bo Li (IHEP)

為君沉醉又何妨輕思細雨情何限 ,只帕酒醒時候斷人腸,不道春難管。 亂山深處水覺迴 ,可惜一枝如畫為誰開

良美人

秦觀

[?] After 36 years of discovery, Charm is still charming Thanks !

Back up slides

Preliminary: relative phase between η_{c} decays and non- η_{c} background

mode	yield	∳ _i (stat.)	$\chi^{2/}$ dof
K _S Kπ	880.4	2.9±0.3	1.1
$KK\pi^0$	948.4	2.4±0.4	0.9
ππη	573.4	2.2±0.2	1.2
K _S K3π	432.3	2.3±0.2	0.7
2K2ππ ⁰	1033.6	2.6±0.2	1.2
6π	664.4	2.5±0.1	1.1
combined	4532.5	2.35±0.05	-

 φ_i values from each mode are consistent within 3σ:
 → use a common phase in the simultaneous fit. June 15, 2011

Vcs / Vcd from semileptonic D decays From Bo Xin

 D^0D^0 bar quantum correlation $@\psi(3770)$ For a physical process producing $D^0 \ \overline{D}^0$ such as \overline{D}^0 $e^+e^- \rightarrow \psi^" \rightarrow D^0 \overline{D}{}^0$ The quantum number of ψ'' is $J^{PC} = 1^{--}$ \therefore For a correlated state C=-1: $\hat{C} \left| D^0 \right\rangle = \left| \overline{D}^0 \right\rangle$ $\psi_{-} = \frac{1}{\sqrt{2}} \left(\left| D^{0} \right\rangle \right| \overline{D}^{0} \left\rangle - \left| \overline{D}^{0} \right\rangle \right| D^{0} \right)$ $\hat{C} \left| \overline{D}^{0} \right\rangle = \left| D^{0} \right\rangle$ Z.Z. Xing, PRD55, 196(1997) The correlated amplitude: $\Gamma_{ij}^{2} = \left| \left\langle i \mid D^{0} \right\rangle \left\langle j \mid \overline{D^{0}} \right\rangle - \left\langle j \mid D^{0} \right\rangle \left\langle i \mid \overline{D^{0}} \right\rangle \right|^{2} \qquad \frac{\left\langle K^{-} \pi^{+} \mid \overline{D^{0}} \right\rangle}{\left\langle K^{-} \pi^{+} \mid D^{0} \right\rangle} = -\frac{r_{K\pi}}{r_{K\pi}}$ $\delta_{K\pi}$ connects D^0 strong phase is necessary input for D^0 mixing and measurements CKM measurements at B factories and LHCb of y and y'

At $\psi(3770) R_M = (x^2 + y^2)/2$ can be measured using the ratios

 $R_{M} = \frac{N[D^{0}\overline{D}^{0} \to (K^{-}\pi^{+})(K^{-}\pi^{+})]}{N[D^{0}\overline{D}^{0} \to (K^{-}\pi^{+})(K^{+}\pi^{-})]}, \quad \frac{N[D^{0}\overline{D}^{0} \to (K^{-}e^{+}\nu)(K^{-}e^{+}\nu)]}{N[D^{0}\overline{D}^{0} \to (K^{-}e^{+}\nu)(K^{+}e^{-}\nu)]}$

For 10⁸ D-pairs about 10 events will be detected. Sensitivity to R_M is about 1×10^{-4}

Expected sensitivity to mixing parameters:

 1 ab^{-1} at tau-charm factory = 10 ab^{-1} at Super B-factory

CPV in D decay at BESIII

Direct CP violation in D decays is expected to be small in SM.

For CF and DCS decays direct CP violation requires New Physics. Exception: $D^{\pm} \rightarrow K_{S,L}\pi^{\pm}$ with A_{CP} =-3.3×10⁻³.

For Singly Cabibbo Suppressed (SCS) decays SM CPV could reach 10⁻³.

$$A_{CP} = \frac{\Gamma(D \to f) - \Gamma(\overline{D} \to \overline{f})}{\Gamma(D \to f) + \Gamma(\overline{D} \to \overline{f})}$$

D.S.Du , EPJC5,579(2007) Y. Grossman et al PRD75, 036008(2007) Best limits:

At BESII, CP asymmetry can be tested with 10⁻³ sensitivity for many final states. Belle: $D^0 \rightarrow K^+ K^-, \pi^+ \pi^ A_{CP}(K^+ K^-) = (0.43 \pm 0.30 \pm 0.11)\%$ $A_{CP}(\pi^+ \pi^-) = (0.43 \pm 0.52 \pm 0.12)\%$

BABAR: $D^+ \rightarrow K_S \pi^+$ $A_{CP}(K_S \pi^+) = (-0.44 \pm 0.13 \pm 0.10)\%$ CLEO-c : Ks $\pi^+ \pi^0$ $A_{CP}(K_S \pi^+ \pi^0) = (0.3 \pm 0.9 \pm 0.3)\%$

CP violation near threshold

CP violating asymmetries can be measured by searching for events with two CP odd or two CP even final states:

$$\pi^+\pi^-, K^+K^-, \pi^0\pi^{0}, Ks\pi^0,$$

for the decay of $\psi'' \rightarrow D^0 \overline{D}^0 \rightarrow f_1 f_2$ $CP(f_1 f_2) = CP(f_1) \cdot CP(f_2) \cdot (-1)^L = CP(\psi'') = +$

 A_{CP} sensitivity : $\Delta A \sim 10^{-3}$

CP violation in mixing can be measured with:

$$A_{SL} = \frac{\Gamma_{l+l+} - \Gamma_{l-l-}}{\Gamma_{l+l+} + \Gamma_{l-l-}} = \frac{1 - |q/p|^4}{1 + |q/p|^4}$$

With 108 D pairs in $(K^+e^-v)(K^+e^-v)$ mode, |q/p| can be measured with
(15-20)% accuracy. Current world averaged value is 0.86 ± 0.16 .
June 15, 2011Hai-Bo Li (IHEP)48

HFAG: new charm mixing with CLEO-c

D. Asner Charm 2010

Brian Meadows ICHEP2010 **Project to 75ab^{-1}@Y(4S):**

Uncertainties shrink: but are limited by the irreducible model uncertainty (biggest effect on x_D) Strong phase measurement from ψ (3770) can greatly reduce this. $x_D = (xxx \pm 0.20) \times 10^{-3}, \quad y_D = (xxx \pm 0.12) \times 10^{-3}$ June 15, 2011

The weak phase γ (ϕ_3) From A. Bondar CHARM2010

Interference between tree-level decays; theoretically clean

Three methods for exploiting interference (choice of D⁰ decay modes):

- Gronau, London, Wyler (GLW): Use CP eigenstates of D^{(*)0} decay, e.g. D⁰ → K_sπ⁰, D⁰ → π⁺π⁻
- Atwood, Dunietz, Soni (ADS): Use doubly Cabibbo-suppressed decays, e.g. D⁰ → K⁺ π⁻
- Giri, Grossman, Soffer, Zupan (GGSZ) / Belle: Use Dalitz plot analysis of 3-body D⁰ decays, e.g. K_s $\pi^+ \pi^-$ June 15, 2011 Hai-Bo Li (IHEP) 51

$B^- \rightarrow D(K_s h^+ h^-) K^-$ Dalitz plot for γ at B factory

A powerful choice of common state f(D) in $K_sh^+h^-$ BABAR: PRL 105, 121801 (2010) Belle : PRD 81, 112002 (2010)

 $B^{\pm} \rightarrow (D \rightarrow K^{0}{}_{s}\pi^{+}\pi^{-})K^{\pm}$

Differents between B⁻ and B⁺ Dalitz plots allow γ extracted in unbinned fit. However, need to understand different amplitudes from D⁰ and D⁰bar decay modes across Dalitz space, esp. variation in strong phase.

52

Approach of B factories: construct Dalitz plot model of D with flavor-tagged decays, estimated model uncertainty of 30-90, which is << statistical error.

But super-B and LHC-b will start to be limited by this model uncertainty -Highly desirable to have precision model independent approach! June 15, 2011 Hai-Bo Li (IHEP)

Binned Model-Independent Fit

Binned fit proposed by Giri *et al.* [PRD 68 (2003) 054018] and developed by Bondar & Poluektov [EPJ C 55 (2008) 51; EPJ C47 (2006) 347] removes model dependence by relating events in bin i of Dalitz plot to *experimental observables.*

CP-tagged Dalitz plots

Clear difference between CP-even and CP-odd tagged Dalitz plots. $K_{s}^{0}\pi^{+}\pi^{-}vs. CP-even Tags$

 $K^0_{\circ}\pi^+\pi^-$ vs. CP-even Tags CP+ tag K_sρ Events/0.05 GeV² 40 $M^2(K_S^0\pi^-)$ 30 20 10 0 2 з 0 0.5 1.5 2 $M^{2}(K_{c}^{0}\pi^{+})$ $M^{2}(\pi^{+}\pi^{-})$ $K_{c}^{0}\pi^{+}\pi^{-}vs$. CP-odd Tags $K_s^0 \pi^+ \pi^- vs. CP-odd Tags$ 3 CP- tag 20 Events/0.05 GeV² ¹ ¹ ¹ ¹ $M^2(K_S^0\pi^-)$ 5 0 n 1.5 0.5 1 2 3 0 1 2 0 $M^{2}(K_{c}^{0}\pi^{+})$ M²(π⁺π⁻)

R. Briere et al., PRD 80 (2009) 032002

(model = BABAR PRL 95 (2005) 121802)

Projected uncertainty on γ arising from uncertainty on c_i & s_i is 1.7°: • Smaller than model error

BESIII will reduce this error to less than 1^o Hai-Bo Li (IHEP) 54

June 15, 2011