In-medium properties of the ω -meson near the production threshold

Michaela Thiel II. Physikalisches Institut, JLU Giessen for the A2 collaboration

Hadron 2011 XIV International Conference on Hadron Spectroscopy Munich 13–17 June 2011

Deutsche Forschungsgemeinschaft DFG funded by DFG (SFB/TR 16)

properties of the ω meson

well known for $\rho=0$:

properties of the ω meson

well known for $\rho=0$:

what happens in a medium?

exp. approaches for studying in-medium effects

- * measurement of the meson lineshape: $H \rightarrow X_1 + X_2$ reconstruction of invariant mass from 4-momenta of decay products: $\mu(\vec{p},\rho,T) = \sqrt{p_1 + p_2}$
 - ensure that decays occur in the medium:
 - select shortlived mesons: $s = \beta \gamma \cdot c\tau \approx 1.3 \text{ fm}(\rho)$; 23 fm(ω); 46 fm(ϕ)
 - \bigstar cut on low meson momenta for ω and ϕ mesons

sensitive to nuclear density at decay point!

exp. approaches for studying in-medium effects

- * measurement of the meson lineshape: $H \rightarrow X_1 + X_2$ reconstruction of invariant mass from 4-momenta of decay products: $\mu(\vec{p},\rho,T) = \sqrt{p_1 + p_2}$
 - ensure that decays occur in the medium:
 - select shortlived mesons: s = βγ · cτ ≈ 1.3 fm(ρ); 23 fm(ω); 46 fm(φ)
 - $\boldsymbol{\diamondsuit}$ cut on low meson momenta for $\boldsymbol{\omega}$ and $\boldsymbol{\phi}$ mesons

sensitive to nuclear density at decay point!

measurement of the momentum distribution: in case of a dropping in-medium mass: when leaving the nucleus hadron has to become on-shell; mass generated at the expense of kinetic energy;

<u>sensitive to nuclear density at production point!</u> advantage: independent of meson lifetime!

2

$\omega \rightarrow \pi^0 \gamma$ invariant mass spectrum

hadronic decay channel: $\gamma A \rightarrow (A-1)\omega p \rightarrow (A-1)\pi^0 \gamma p \rightarrow (A-1)\gamma \gamma \gamma p$

background determination: 2 approaches

average deviation from 1.0 in the mass range 430 – 650 MeV: 1% background determination: 2 approaches

5

background determination: 2 approaches

comparison of ω signal lineshapes

comparison of ω signal lineshapes

comparison of ω signal for different nuclei

ω-meson lineshape in good
agreement for C und Nb target
slightly broader compared
to LH₂ signal

comparison of ω signal for different nuclei

ω-meson lineshape in good
agreement for C und Nb target
slightly broader compared
to LH₂ signal

is this consistent with an in-medium broadening (Γ_{med} ≈ 150 MeV) determined from the Transparency ratio?

(M. Kotulla et al., PRL 100 (2008), 192302)

comparison of ω signal for different nuclei

ω-meson lineshape in good agreement for C und Nb target slightly broader compared to LH₂ signal

is this consistent with an in-medium broadening ($\Gamma_{med} \approx 150$ MeV) determined from the transparency ratio?

(M. Kotulla et al., PRL 100 (2008), 192302)

GiBUU simulations (J. Weil)

energy range: 900 - 1300 MeV (E_{thresh} = 1108 MeV)

<u>4 scenarios:</u> The in-medium modification

- * collisional broadening ($\Gamma_{med} = 150 \text{MeV}$) * coll. broadening plus mass shift $\mathbf{m} = \mathbf{m}_0 \left(1 + \alpha \frac{\rho}{\rho_0}\right)$
- ✤ mass shift (-16%)

comparison exp. data to GiBUU (J. Weil / U. Mosel)

<u>GiBUU (for Nb target):</u> • no in-medium modification

- ✤ collisional broadening (Γ_{med} = 150 MeV)
- * collisional broadening plus mass shift $(\Gamma_{med} = 150 \text{ MeV}, \alpha = -0.16)$

* mass shift only $(\alpha = -0.16)$

data disfavour "mass shift only" scenario

limited sensitivity to in-medium signal

experimentally observed mass distribution = convolution of spectral function with branching ratio into channel being studied

 $\frac{d\sigma_{H\to X_1X_2}}{d\mu} \sim A(\mu) \cdot \frac{\Gamma_{V\to \text{final state}}}{\Gamma_{\text{tot}}} = \frac{\mu \cdot \Gamma_{\text{tot}}}{\left(\mu^2 - m_V^2\right)^2 + \mu^2 \Gamma_{\text{tot}}^2} \cdot \frac{\Gamma_{V\to \text{final state}}}{\Gamma_{\text{tot}}} = \frac{\Gamma_{V\to \text{final state}}}{\Gamma_{V\to \text{final state}}} = \frac{\Gamma_{V\to \text{final state}}}{\Gamma_{V\to \text{final state}}} = \frac{\Gamma_{V\to \text{final state}}}{\Gamma_{V\to \text{final state}}} = \frac{\Gamma_{V\to \text{f$

(F. Eichstaedt et al.,

3 effects limit sensitivity:

- ω yield reduced by increase of in-medium width ($\Gamma_{med} \approx 16 \cdot \Gamma_{vac}$)
- spread out in mass

(M. Kotulla et al., PRL 100 (2008), 192302)

1()

 \Rightarrow only 20% of all ω decays occur at $\rho > 0.1 \rho_0$

measurement of the momentum distribution

- ✤ carbon beamtime
- * analysis with exactly 3γ (+0,1,2,... charged) final state
- \bigstar wyield in different momentum bins

measurement of the momentum distribution

data disfavour "mass shift" and "coll. broad. + mass shift" scenario

conclusion and outlook

* ω -lineshape analysis

- ✤ sensitive to nuclear density at decay point
- signal sensitive to background determination
- reduced sensitivity
- * favours scenarios without mass shift
- - sensitive to nuclear density at production point
 - favours scenarios without mass shift
 - model dependent!

conclusion and outlook

* ω -lineshape analysis

- ✤ sensitive to nuclear density at decay point
- * signal sensitive to background determination
- reduced sensitivity
- * favours scenarios without mass shift

* ω -momentum analysis

- sensitive to nuclear density at production point
- favours scenarios without mass shift
- model dependent!

outlook:

- ↔ lineshape analysis: energy range $E_{\gamma} = 900 1100$ MeV
- \bullet cut on ω momentum: $p_{\omega} < 300$ MeV

backup slides

prompt time event selection

photon / particle separation possible using time-of-flight 1

charged particle identification

pion sideband subtraction

