Photoproduction of η' Mesons from Nuclei

recent results on in-medium properties of η' meson from CBELSA/TAPS

Mariana Nanova

II. Physikalisches Institut

JUSTUS-LIEBIG-UNIVERSITAT GIESSEN

for CBELSA/TAPS Collaboration

XIV International Conference on Hadron Spectroscopy HADRON 2011, 13-17 June, München, Germany

*funded by the DFG within SFB/TR16

outline

outline

motivation

- experimental approaches for studying the in-medium properties of ŋ' meson
- experimental setup
- $\boldsymbol{\diamondsuit}$ $\boldsymbol{\eta}$ ' photoproduction on proton and deuteron
- - reconstruction of the η^{\prime} meson
 - transparency ratio (T_A) measurements
 - comparison with the T_{A} of other mesons
- summary & outlook

pseudoscalar meson nonet

masses as a result of symmetry breaking

predicted in-medium properties of the η ' meson

V. Bernard und U.G. Meissner, Phys. Rev. D 38 (1988) 1551

the mass of the η' meson is almost independent of density

H. Nagahiro, M. Takizawa and S. Hirenzaki, Phys. Rev. C 74 (2006) 045203

mass changes of η and η' mesons in the nuclear medium

(talk Hirenzaki on Thursday, at 16:50 in the HHCM session)

M. Nanova, Hadron 2011, München

How to study in-medium properties of the η ' meson?

How to study in-medium properties of the η ' meson?

• in-medium mass?

line shape analysis: not applicable; η' meson decays outside of nucleus;

 $\lambda_{dec} = \hbar c / \Gamma_0 = 1000 fm >>> R_{nucl}$

How to study in-medium properties of the η^{\prime} meson?

• in-medium mass?

line shape analysis: not applicable; η' meson decays outside of nucleus;

 $\lambda_{dec} = \hbar c / \Gamma_0 = 1000 fm >>> R_{nucl}$

indirect evidence for reduction of η' mass in the hot medium (PHENIX & STAR data) T. Csörgö, R. Vèrtesi and J. Szklai Phys. Rev. Lett. 105 (2010) 182301 Phys. Rev. C 83 (2011) 054903

How to study in-medium properties of the η^{\prime} meson?

• in-medium mass?

line shape analysis: not applicable; η' meson decays outside of nucleus;

 $\lambda_{dec} = \hbar c / \Gamma_0 = 1000 fm >>> R_{nucl}$

• in-medium width?

indirect evidence for reduction of η' mass in the hot medium (PHENIX & STAR data) T. Csörgö, R. Vèrtesi and J. Szklai Phys. Rev. Lett. 105 (2010) 182301 Phys. Rev. C 83 (2011) 054903

attenuation measurement of the η ' meson flux

experimental observable to extract the in-medium witdh of the meson:

transparency ratio:

How to study in-medium properties of the η ' meson?

• in-medium mass?

line shape analysis: not applicable; η' meson decays outside of nucleus;

 $\lambda_{dec} = \hbar c / \Gamma_0 = 1000 fm >>> R_{nucl}$

• in-medium width?

indirect evidence for reduction of η' mass in the hot medium (PHENIX & STAR data) T. Csörgö, R. Vèrtesi and J. Szklai Phys. Rev. Lett. 105 (2010) 182301 Phys. Rev. C 83 (2011) 054903

attenuation measurement of the η ' meson flux

experimental observable to extract the in-medium witdh of the meson: transparency ratio:

$$T_A = \frac{\sigma_{\gamma A \to \eta' X}}{A \cdot \sigma_{\gamma N \to \eta' X}}$$

How to study in-medium properties of the η ' meson?

• in-medium mass?

line shape analysis: not applicable; η' meson decays outside of nucleus;

 $\lambda_{dec} = \hbar c / \Gamma_0 = 1000 fm >>> R_{nucl}$

• in-medium width?

indirect evidence for reduction of η' mass in the hot medium (PHENIX & STAR data) T. Csörgö, R. Vèrtesi and J. Szklai Phys. Rev. Lett. 105 (2010) 182301 Phys. Rev. C 83 (2011) 054903

attenuation measurement of the η ' meson flux

experimental observable to extract the in-medium witdh of the meson: transparency ratio:

$$T_{A} = \frac{\sigma_{\gamma A \to \eta' X}}{A \cdot \sigma_{\gamma N \to \eta' X}}$$

measure for the loss of meson flux through inelastic processes in the nucleus applicable for any meson irrespective of lifetime
 ω: M. Kotulla et al., (CBELSA/TAPS), PRL 100 (2008)192302
 M. H. Wood et al., (CLAS), PRL 105 (2010) 112301

- Φ: T. Ishikawa et al., (Spring8), PLB 608 (2005) 215
 - A. Polyanskiy et. al., (COSY-ANKE), (talk later in this session)
 - P. Salabura (plenary session, Friday 12:00)

Crystal Barrel/TAPS@ELSA Experiment

photoproduction of η ' meson on proton and deuteron

 η ' coupling to different resonances

photoproduction of η° mesons on nuclei

$$\eta' \to \pi^0 \pi^0 \eta \to 6\gamma$$
 BR: 8.1%

- solid targets: ¹²C, ⁴⁰Ca, ⁹³Nb and ²⁰⁸Pb;
 20 mm, 10 mm, 1 mm and 0.6 mm ≤ (6-9)% X₀
- event selection: ≥ 6 neutral particles AND/OR 6n + 1ch
- sum energy of 6 neutral particles > 600 MeV
- competing channel with same final state: $\eta \to \pi^0 \pi^0 \pi^0 \to 6\gamma$ reconstructed and removed in further analysis

photoproduction of η° mesons on nuclei (E_Y=1200-2200 MeV)

 $\gamma A \to \eta' A' \to \pi^0 \pi^0 \eta \to 6 \gamma A'$

A=¹²C, ⁴⁰Ca, ⁹³Nb, ²⁰⁸Pb

9

acceptance

E_γ = 1200 - 2200 MeV

 $\label{eq:relation} \begin{array}{l} \eta' \mbox{ MC simulation} \\ acceptance (T_{kin}, \ensuremath{\theta^{lab}}\) \\ independent \mbox{ of any reaction model} \\ \mbox{ `grid method' for acceptance correction (I. Jaegle)} \end{array}$

C target efficiency

efficiency correction of the data - event by event in (T_{kin}, θ^{lab}) plane

efficiency is slightly different for different solid targets

• in-medium: quasi-particle,

the properties reflect

interaction with the medium

• in-medium: quasi-particle, the properties reflect interaction with the medium

$$T_A = \frac{\sigma_{\gamma A \to \eta' X}}{A \cdot \sigma_{\gamma N \to \eta' X}}$$

 in-medium: quasi-particle, the properties reflect interaction with the medium

$$T_A = \frac{\sigma_{\gamma A \to \eta' X}}{A \cdot \sigma_{\gamma N \to \eta' X}}$$

• inelastic processes -

remove the mesons: $\eta' N \rightarrow \pi N$

 in-medium: quasi-particle, the properties reflect interaction with the medium

$$T_A = \frac{\sigma_{\gamma A \to \eta' X}}{A \cdot \sigma_{\gamma N \to \eta' X}}$$

inelastic processes -

remove the mesons: $\eta' N \rightarrow \pi N$

shortening of lifetime of the meson; increase the width: $\Gamma(\rho, |p_{\eta'}|) \propto \rho.v.\sigma_{abs}$

 in-medium: quasi-particle, the properties reflect interaction with the medium

$$T_A = \frac{\sigma_{\gamma A \to \eta' X}}{A \cdot \sigma_{\gamma N \to \eta' X}}$$

inelastic processes -

remove the mesons: $\eta' N \rightarrow \pi N$

width determination from T_A

 \Rightarrow

shortening of lifetime of the meson; increase the width: $\Gamma(\rho, |p_{\eta'}|) \propto \rho.v.\sigma_{abs}$

 in-medium: quasi-particle, the properties reflect interaction with the medium

$$T_A = \frac{\sigma_{\gamma A \to \eta' X}}{A \cdot \sigma_{\gamma N \to \eta' X}}$$

• inelastic processes -

remove the mesons: $\eta' N \rightarrow \pi N$

• width determination from T_A

shortening of lifetime of the meson; increase the width: $\Gamma(\rho,|p_{\eta'}|) \propto \rho.v.\sigma_{abs}$

estimation of σ_{abs}

 in-medium: quasi-particle, the properties reflect interaction with the medium

$$T_A = \frac{\sigma_{\gamma A \to \eta' X}}{A \cdot \sigma_{\gamma N \to \eta' X}}$$

- inelastic processes remove the mesons: $\eta' N \rightarrow \pi N$
- width determination from T_A

problems

shortening of lifetime of the meson; increase the width: $\Gamma(\rho,|p_{\eta'}|) \propto \rho.v.\sigma_{abs}$

estimation of σ_{abs}

 in-medium: quasi-particle, the properties reflect interaction with the medium

$$T_A = \frac{\sigma_{\gamma A \to \eta' X}}{A \cdot \sigma_{\gamma N \to \eta' X}}$$

- inelastic processes remove the mesons: $\eta' N \rightarrow \pi N$
- width determination from T_A
 <u>problems</u>
 - σ_{neutron} mostly unknown

shortening of lifetime of the meson; increase the width: $\Gamma(\rho,|p_{\eta'}|) \propto \rho.v.\sigma_{abs}$

estimation of σ_{abs}

 in-medium: quasi-particle, the properties reflect interaction with the medium

$$T_A = \frac{\sigma_{\gamma A \to \eta' X}}{A \cdot \sigma_{\gamma N \to \eta' X}}$$

- inelastic processes remove the mesons: $\eta' N \rightarrow \pi N$
- width determination from T_A
 problems
 - σ_{neutron} mostly unknown

- shortening of lifetime of the meson; increase the width: $\Gamma(\rho, |p_{\eta'}|) \propto \rho.v.\sigma_{abs}$
- > estimation of σ_{abs}

normalization of T_A

 in-medium: quasi-particle, the properties reflect interaction with the medium

$$T_A = \frac{\sigma_{\gamma A \to \eta' X}}{A \cdot \sigma_{\gamma N \to \eta' X}}$$

- inelastic processes remove the mesons: $\eta' N \rightarrow \pi N$
- width determination from T_A
 <u>problems</u>
 - σ_{neutron} mostly unknown
 - shadowing effect

- shortening of lifetime of the meson; increase the width: $\Gamma(\rho, |p_{\eta'}|) \propto \rho.v.\sigma_{abs}$
- > estimation of σ_{abs}

normalization of T_A

 in-medium: quasi-particle, the properties reflect interaction with the medium

$$T_A = \frac{\sigma_{\gamma A \to \eta' X}}{A \cdot \sigma_{\gamma N \to \eta' X}}$$

- inelastic processes remove the mesons: $\eta' N \rightarrow \pi N$
- width determination from T_A
 <u>problems</u>
 - σ_{neutron} mostly unknown
 - shadowing effect

shortening of lifetime of the meson; increase the width: $\Gamma(\rho,|p_{\eta'}|) \propto \rho.v.\sigma_{abs}$

> estimation of σ_{abs}

normalization of T_A

~ 10 % @ 2 GeV N. Bianchi et. al, PRC 54 (1996) 1688

T. Falter, S. Leupold and U. Mosel, 0102058 [nucl-th]

 in-medium: quasi-particle, the properties reflect interaction with the medium

$$T_A = \frac{\sigma_{\gamma A \to \eta' X}}{A \cdot \sigma_{\gamma N \to \eta' X}}$$

T. Falter, S. Leupold and U. Mosel, 0102058 [nucl-th]

- inelastic processes -
remove the mesons: η' N→ π N⇒shortening of lifetime of the meson;
increase the width: Γ(ρ,|pη'|)×ρ.v.σabs• width determination from TA
problems⇒estimation of σabs• orneutron mostly unknown
• shadowing effect⇒normalization of TA
~ 10 % @ 2 GeV
N. Bianchi et. al, PRC 54 (1996) 1688
 - not only absorption; regeneration in two-step processes possible

 in-medium: quasi-particle, the properties reflect interaction with the medium

$$T_A = \frac{\sigma_{\gamma A \to \eta' X}}{A \cdot \sigma_{\gamma N \to \eta' X}}$$

T. Falter, S. Leupold and U. Mosel, 0102058 [nucl-th]

• inelastic processes remove the mesons: $\eta' N \rightarrow \pi N$ \Rightarrow shortening of lifetime of the meson; increase the width: $\Gamma(\rho, |\rho_{\eta'}|) \sim \rho. v. \sigma_{abs}$ • width determination from T_A \Rightarrow estimation of σ_{abs} problems • $\sigma_{neutron}$ mostly unknown • shadowing effect \Rightarrow normalization of T_A \Rightarrow $\sim 10 \% @ 2 \text{ GeV}_{N. Bianchi et. al, PRC 54 (1996) 1688}$

not only absorption; regeneration in two-step processes possible

normalization to light nucleus (¹²C) - helps to suppress these effects

M. Nanova, Hadron 2011, München

in-medium width of the η ^{\circ} meson

in-medium width of the η ' meson

in-medium width of the η ^{\circ} meson

in-medium width of the η ^{\circ} meson

$\begin{aligned} \frac{\text{transparency ratio:}}{T_A &= \frac{12 \cdot \sigma_{\gamma A \to \eta' X}}{A \cdot \sigma_{\gamma C \to \eta' X}} & \text{normalized to C} \\ \\ \text{parametrization:} \\ \sigma(A) &= \sigma_0 \cdot A^{\alpha} \\ \Rightarrow & T_A &= A^{\alpha - 1} \end{aligned}$

comparison with T_A for ω meson $\Gamma(\rho_0, <|p_{\omega}| > \approx 1.1 \text{ GeV/c}) \approx 130-150 \text{ MeV}$ M. Kotulla et al. PRL 100 (2008) 192302

η' absorption weaker than ω absorption!!

but how large is the width??

→ comparison to transport model calculations

η^\prime in-medium width and absorption cross section

η' transparency ratio compared with the calculations by *A.Ramos and E. Oset* $\sigma_{\gamma A \to \eta' A'} = C \int d^3 r \rho(\vec{r}) \frac{1}{2\pi} \int_0^{2\pi} d(\phi_{\text{c.m.}}^{\eta'}) \frac{1}{2} \int_{-1}^1 d(\cos \theta_{\text{c.m.}}^{\eta'}) \frac{d\sigma}{d\Omega} (\gamma p \to \eta' p) P_s(\vec{r})$ where P_s(\vec{r}) is the survival probability $P_s(\vec{r}) = \exp\left[\int_0^\infty dl \frac{\text{Im } \Pi_{\eta'}(\rho(\vec{r}'))}{|\vec{k}_{\eta'}|}\right]$ with $\vec{r}' = \vec{r} + l \frac{\vec{k}_{\eta'}}{|\vec{k}_{\eta'}|}$

η^\prime in-medium width and absorption cross section

 $\begin{aligned} \mathbf{\eta}' \text{ transparency ratio compared with the calculations by } A.Ramos \text{ and } E. \text{ Oset} \\ \sigma_{\gamma A \to \eta' A'} &= C \int d^3 r \rho(\vec{r}) \frac{1}{2\pi} \int_0^{2\pi} d(\phi_{\text{c.m.}}^{\eta'}) \frac{1}{2} \int_{-1}^1 d(\cos \theta_{\text{c.m.}}^{\eta'}) \frac{d\sigma}{d\Omega} (\gamma p \to \eta' p) P_s(\vec{r}) \\ \text{where } \mathsf{P}_{\mathsf{s}}(\vec{r}) \text{ is the survival probability } P_s(\vec{r}) &= \exp\left[\int_0^\infty dl \frac{\operatorname{Im} \Pi_{\eta'}(\rho(\vec{r}'))}{|\vec{k}_{\eta'}|}\right] \text{ with } \vec{r}' = \vec{r} + l \frac{\vec{k}_{\eta'}}{|\vec{k}_{\eta'}|} \end{aligned}$

comparison to data $\Gamma(\rho_0, < |\vec{p}_{\eta'}| > \approx 1.05 \text{ GeV/c}) \approx 25-30 \text{ MeV}$

η^\prime in-medium width and absorption cross section

 $\begin{aligned} \mathbf{\eta}' \text{ transparency ratio compared with the calculations by } A.Ramos \text{ and } E. \text{ Oset} \\ \sigma_{\gamma A \to \eta' A'} &= C \int d^3 r \rho(\vec{r}) \frac{1}{2\pi} \int_0^{2\pi} d(\phi_{\text{c.m.}}^{\eta'}) \frac{1}{2} \int_{-1}^1 d(\cos \theta_{\text{c.m.}}^{\eta'}) \frac{d\sigma}{d\Omega} (\gamma p \to \eta' p) P_s(\vec{r}) \\ \text{where } \mathsf{P}_{\mathsf{s}}(\vec{r}) \text{ is the survival probability } P_s(\vec{r}) &= \exp\left[\int_0^\infty dl \frac{\operatorname{Im} \Pi_{\eta'}(\rho(\vec{r}'))}{|\vec{k}_{\eta'}|}\right] \text{ with } \vec{r}' = \vec{r} + l \frac{\vec{k}_{\eta'}}{|\vec{k}_{\eta'}|} \end{aligned}$

absorption cross section: $\sigma_{\eta'N} = \frac{\Gamma_{inel}}{\rho_0 \cdot \beta \cdot \hbar \cdot c} \approx 11 \text{ mb}$

momentum dependence of the η ' transparency ratio

$$T_A = \frac{\sigma_{\gamma A \to \eta' X}}{A \cdot \sigma_{\gamma N \to \eta' X}}$$

• two-step processes -

increase the number of mesons:

a) $\gamma N \rightarrow \pi N$ and then:

 $\pi N \rightarrow \eta' N / \sigma = 0.1 \text{ mb } @ p_{\pi} \approx 1.5 \text{ GeV/c}$

 $\pi N \rightarrow \omega N / \sigma = 2.5 \text{ mb} @ p_{\pi} \approx 1.1 \text{ GeV/c}$

 $\pi N \rightarrow \eta N / \sigma = 3 \text{ mb } @ p_{\pi} \approx 0.8 \text{ GeV/c}$

Landolt-Börnstein, New Series Vol. I/12 a (1988)

 $T_A = \frac{O_{\gamma A \to \eta' X}}{A \cdot \sigma_{\gamma N \to \eta' X}}$

• two-step processes -

increase the number of mesons:

a) $\gamma N \rightarrow \pi N$ and then:

 $\pi N \rightarrow \eta' N / \sigma = 0.1 \text{ mb } @ p_{\pi} \approx 1.5 \text{ GeV/c}$

 $\pi N \rightarrow \omega N / \sigma = 2.5 \text{ mb} @ p_{\pi} \approx 1.1 \text{ GeV/c}$

 $\pi N \rightarrow \eta N / \sigma = 3 \text{ mb } @ p_{\pi} \approx 0.8 \text{ GeV/c}$

Landolt-Börnstein, New Series Vol. I/12 a (1988)

$$T_A = \frac{\sigma_{\gamma A \to \eta' X}}{A \cdot \sigma_{\gamma N \to \eta' X}}$$

• two-step processes -

increase the number of mesons:

a) $\gamma N \rightarrow \pi N$ and then:

 $\pi N \rightarrow \eta' N / \sigma = 0.1 \text{ mb } @ p_{\pi} \approx 1.5 \text{ GeV/c}$

 $\pi N \rightarrow \omega N$ / σ = 2.5 mb @ $p_{\pi} \approx$ 1.1 GeV/c

 $\pi N \rightarrow \eta N / \sigma = 3 \text{ mb } @ p_{\pi} \approx 0.8 \text{ GeV/c}$ Landolt-Börnstein, New Series Vol. I/12 a (1988)

$$T_{A} = \frac{\sigma_{\gamma A \to \eta' X}}{A \cdot \sigma_{\gamma N \to \eta' X}}$$

absorption measurement distorted by two-step production processes

• two-step processes -

increase the number of mesons:

a) $\gamma N \rightarrow \pi N$ and then:

 $\pi N \rightarrow \eta' N / \sigma = 0.1 \text{ mb } @ p_{\pi} \approx 1.5 \text{ GeV/c}$

 $\pi N \rightarrow \omega N / \sigma = 2.5 \text{ mb } @ p_{\pi} \approx 1.1 \text{ GeV/c}$

 $\pi N \rightarrow \eta N / \sigma = 3 \text{ mb } @ p_{\pi} \approx 0.8 \text{ GeV/c}$ Landolt-Börnstein, New Series Vol. I/12 a (1988)

 $T_A = \frac{O_{\gamma A \to \eta' X}}{A \cdot O_{\gamma N \to \eta' X}}$

absorption measurement distorted by two-step production processes

suppressing this process

• two-step processes -

increase the number of mesons:

a) $\gamma N \rightarrow \pi N$ and then:

 $\pi N \rightarrow \eta' N / \sigma = 0.1 \text{ mb } @ p_{\pi} \approx 1.5 \text{ GeV/c}$

 $\pi N \rightarrow \omega N$ / σ = 2.5 mb @ $p_{\pi} \approx$ 1.1 GeV/c

 $\pi N \rightarrow \eta N / \sigma = 3 \text{ mb } @ p_{\pi} \approx 0.8 \text{ GeV/c}$ Landolt-Börnstein, New Series Vol. I/12 a (1988)

$$T_{A} = \frac{\sigma_{\gamma A \to \eta' X}}{A \cdot \sigma_{\gamma N \to \eta' X}}$$

absorption measurement distorted by two-step production processes

• two-step processes -

increase the number of mesons:

a) $\gamma N \rightarrow \pi N$ and then:

 $\pi N \rightarrow \eta' N / \sigma = 0.1 \text{ mb } @ p_{\pi} \approx 1.5 \text{ GeV/c}$

 $\pi N \rightarrow \omega N / \sigma = 2.5 \text{ mb } @ p_{\pi} \approx 1.1 \text{ GeV/c}$

 $\pi N \rightarrow \eta N / \sigma = 3 \text{ mb } @ p_{\pi} \approx 0.8 \text{ GeV/c}$

Landolt-Börnstein, New Series Vol. I/12 a (1988)

$$T_{A} = \frac{\sigma_{\gamma A \to \eta' X}}{A \cdot \sigma_{\gamma N \to \eta' X}}$$

absorption measurement distorted by two-step production processes

b) via resonances: $\eta N \rightarrow N^* \rightarrow \eta N$

• two-step processes -

increase the number of mesons:

a) $\gamma N \rightarrow \pi N$ and then:

 $\pi N \rightarrow \eta' N / \sigma = 0.1 \text{ mb } @ p_{\pi} \approx 1.5 \text{ GeV/c}$

 $\pi N \rightarrow \omega N / \sigma$ = 2.5 mb @ $p_{\pi} \approx$ 1.1 GeV/c

 $\pi N \rightarrow \eta N / \sigma = 3 \text{ mb } @ p_{\pi} \approx 0.8 \text{ GeV/c}$

$$T_{A} = \frac{\sigma_{\gamma A \to \eta' X}}{A \cdot \sigma_{\gamma N \to \eta' X}}$$

absorption measurement distorted by two-step production processes

• two-step processes -

increase the number of mesons:

a) $\gamma N \rightarrow \pi N$ and then:

 $\pi N \rightarrow \eta' N / \sigma = 0.1 \text{ mb } @ p_{\pi} \approx 1.5 \text{ GeV/c}$ $\pi N \rightarrow \omega N / \sigma = 2.5 \text{ mb } @ p_{\pi} \approx 1.1 \text{ GeV/c}$

 $\pi N \rightarrow \eta N / \sigma$ = 3 mb @ p_{\pi} \approx 0.8 GeV/c

Landolt-Börnstein, New Series Vol. I/12 a (1988)

$$T_A = \frac{\sigma_{\gamma A \to \eta' X}}{A \cdot \sigma_{\gamma N \to \eta' X}}$$

absorption measurement distorted by two-step production processes

$$T_A = \frac{12 \cdot \sigma_{\gamma A \to \eta' X}}{A \cdot \sigma_{\gamma C \to \eta' X}}$$

$$T_A = \frac{12 \cdot \sigma_{\gamma A \to \eta' X}}{A \cdot \sigma_{\gamma C \to \eta' X}}$$

T. Mertens et al., EPJA 38 (2008) 195 photoproduction of **η meson** on nuclei

 $T_A = \frac{12 \cdot \sigma_{\gamma A \to \eta' X}}{A \cdot \sigma_{\gamma C \to \eta' X}}$

T. Mertens et al., EPJA 38 (2008) 195 photoproduction of **η meson** on nuclei

 $T_A = \frac{12 \cdot \sigma_{\gamma A \to \eta' X}}{A \cdot \sigma_{\gamma C \to \eta' X}}$

T. Mertens et al., EPJA 38 (2008) 195 photoproduction of **η meson** on nuclei two-step processes suppressed by $T_{\eta}>(E_{\gamma}-m_{\eta})/2$

 $T_A = \frac{12 \cdot \sigma_{\gamma A \to \eta' X}}{A \cdot \sigma_{\gamma C \to \eta' X}}$

T. Mertens et al., EPJA 38 (2008) 195 photoproduction of **η meson** on nuclei two-step processes suppressed by $T_{\eta}>(E_{\gamma}-m_{\eta})/2$

 $T_A = \frac{12 \cdot \sigma_{\gamma A \to \eta' X}}{A \cdot \sigma_{\gamma C \to \eta' X}}$

T. Mertens et al., EPJA 38 (2008) 195 photoproduction of **η meson** on nuclei two-step processes suppressed by $T_{\eta}>(E_{\gamma}-m_{\eta})/2$

A-scaling of production cross sections as a function of the meson kinetic energy $\sigma(A) = \sigma_0 \cdot A^{\alpha(T)} \quad \alpha \approx 1.0 : \text{mesons escape from the full volume}$ $\alpha \approx 2/3 : \text{mesons escape only from the surface}$

A-scaling of production cross sections as a function of the meson kinetic energy $\sigma(A) = \sigma_0 \cdot A^{\alpha(T)} \quad \alpha \approx 1.0 : \text{mesons escape from the full volume}$ $\alpha \approx 2/3 : \text{mesons escape only from the surface}$

A-scaling of production cross sections as a function of the meson kinetic energy

 $\sigma(A) = \sigma_0 \bullet A^{\alpha(T)}$ $\alpha \approx 1.0$: mesons escape from the full volume

 $\alpha \approx 2/3$: mesons escape only from the surface

π^0 mesons:

low energies: only very weak interaction; strong absorption for higher energies: resonance excitation *B. Krusche et al., Eur. Phys. J. A* **22**, 277 (2004).

<u>n mesons</u>:

strong absorption for all T

A-scaling of production cross sections as a function of the meson kinetic energy

 $\sigma(A) = \sigma_0 \bullet A^{\alpha(T)}$ $\alpha \approx 1.0$: mesons escape from the full volume

 $\alpha \approx 2/3$: mesons escape only from the surface

π^0 mesons:

low energies: only very weak interaction; strong absorption for higher energies: resonance excitation *B. Krusche et al., Eur. Phys. J. A* **22**, 277 (2004).

<u>n mesons</u>:

strong absorption for all T

A-scaling of production cross sections as a function of the meson kinetic energy

 $\sigma(A) = \sigma_0 \bullet A^{\alpha(T)}$ $\alpha \approx 1.0$: mesons escape from the full volume

 $\alpha \approx 2/3$: mesons escape only from the surface

π^0 mesons:

low energies: only very weak interaction; strong absorption for higher energies: resonance excitation *B. Krusche et al., Eur. Phys. J. A* **22**, 277 (2004).

<u>n mesons</u>:

strong absorption for all T

A-scaling of production cross sections as a function of the meson kinetic energy

 $\sigma(A) = \sigma_0 \bullet A^{\alpha(T)}$ $\alpha \approx 1.0$: mesons escape from the full volume

 $\alpha \approx 2/3$: mesons escape only from the surface

π^0 mesons:

low energies: only very weak interaction; strong absorption for higher energies: resonance excitation *B. Krusche et al., Eur. Phys. J. A* **22**, 277 (2004).

<u>n mesons</u>:

strong absorption for all T

A-scaling of production cross sections as a function of the meson kinetic energy

 $\sigma(A) = \sigma_0 \bullet A^{\alpha(T)}$ $\alpha \approx 1.0$: mesons escape from the full volume

 $\alpha \approx 2/3$: mesons escape only from the surface

π^0 mesons:

low energies: only very weak interaction; strong absorption for higher energies: resonance excitation *B. Krusche et al., Eur. Phys. J. A* **22**, 277 (2004).

<u>n mesons</u>:

strong absorption for all T

M. Röbig-Landau et al., Phys. Lett. B, **373**, 45 (1996). *T.* Mertens et al., Eur. Phys. J. A **38**, 195 (2008).

<u>ω mesons</u>:

strong absorption: <α>_T≈0.67; *M. Kotulla et al., Phys. Rev. Lett. 100, 192302 (2008)*

<u> n' mesons</u>:

 $<\alpha>_T \approx 0.84$ η'N interaction weaker than ηN *M. Nanova et al. to be published*

summary & outlook

preliminary results about the in-medium properties of n' meson:

- transparency ratio measurement:

in-medium width 25-30 MeV at $p_{\eta'} \approx 1.05$ GeV/c and $\rho = \rho_0 \Rightarrow \sigma_{\eta'N} \approx 11$ mb

- secondary production suppressed by cut on kinetic energy of meson
- cross section measurement $\sigma_A = \sigma_0 \cdot A^{\alpha}$:

 $<\alpha>_T\approx 0.84$ - indication for weaker interaction in nuclear medium compared to η and ω

summary & outlook

preliminary results about the in-medium properties of n' meson:

- transparency ratio measurement:

in-medium width 25-30 MeV at $p_{\eta'} \approx 1.05$ GeV/c and $\rho = \rho_0 \Rightarrow \sigma_{\eta'N} \approx 11$ mb

- secondary production suppressed by cut on kinetic energy of meson
- cross section measurement $\sigma_A = \sigma_0 \cdot A^{\alpha}$:

 $<\alpha>_T\approx 0.84$ - indication for weaker interaction in nuclear medium compared to η and ω

<u>next step:</u> CB/TAPS@ ELSA data on ¹²C target (E_y up to 2.9 GeV)

- searching for η '- bound states

H. Nagahiro, M. Takizawa and S. Hirenzaki, Phys. Rev. C 74 (2006) 045203

