Measuring the phase between strong and EM J/ψ decay amplitudes

Marco Maggiora* on behalf of the BESIII Collaboration

* Dep. of General Physics, University of Turin and INFN, Turin

HADRON 2011

XIV International Conference on Hadron Spectroscopy

Künstlerhaus - Munich, June 13th - 17th, 2011

J/ψ strong and electromagnetic decay amplitudes

strong $\rightarrow A_{3g}$	
WWW Pransing hadrons	
electromagnetic $\longrightarrow A_{\gamma}$	Ì
WWWW Madrons	
non-resonant continuum $\rightarrow A_{QED}$	
hadrons	ł

Resonant contributions

 $egin{aligned} \Phi_{
ho}(G^{M}_{
ho}) &\sim \Phi_{\gamma} & \Phi_{3g} = 0 \ \Phi_{\gamma} \text{: relative } A_{3g} - A_{
ho} \end{aligned}$

\bigcirc J/ $\psi \rightarrow N\bar{N}$	$\Phi_{ m p}=-89^\circ\pm15^\circ$	[1]
$\bigcirc J/\psi \rightarrow VP(1^-0^-)$	$\Phi_{p}^{'} = 106^{\circ} \pm 10^{\circ}$	[2]
$\bigcirc J/\psi \rightarrow PP(0^-0^-)$	$\Phi_{ m p}^{'} = 89.6^{\circ} \pm 9.9^{\circ}$	[3]
$\bigcirc J/\psi \rightarrow VV (1^-1^-)$	$\Phi_p = 138^\circ \pm 37^\circ$	[3]

NO INTERFERENCE!

Non-resonant continuum

affects the measured BR	[4]
affects Φ _p	[4]

INTERFERENCE WITH A3g!

^[1] R. Baldini, C. Bini, E. Luppi, Phys. Lett. B404, 362 (1997); R. Baldini et al., Phys. Lett. B444, 111 (1998).

^[2] L. Kopke and N. Wermes, Phys. Rep. 174, 67 (1989); J. Jousset et al., Phys. Rev. D41,1389 (1990).

^[3] M. Suzuki et al., Phys. Rev. D60, 051501 (1999).

^[4] P. Wang, arXiv:hep-ph/0410028v2 and references therein.

HADRON 2011 📓 June 13th - 17th, 2011

J/ψ strong and electromagnetic decay amplitudes

IMAGINARY AMPLITUDES HARD TO BE EXPLAINED!

- J/ $\psi \subset$ perturbative regime (\leftarrow $\Gamma_{J}/\psi \sim$ 93KeV)
- pQCD \longrightarrow real A_{γ}, A_{3g}
- QCD does not provide sizeable imaginary amplitudes (Φ_p 10° at most ^[1])
- a J/ ψ V glueball mixing ^[2] may explain imaginary amplitudes; and ψ' ?
- determination of phases Φ_p rely on theoretical hypotheses

EXPERIMENTAL DATA

- $\bullet\,$ no interference term in the inclusive J/ $\psi\,$ and $\psi'\,$ production
- early evidence of an interf. term in $e^+e^- o J/\psi o \mu^+\mu^-$ @ SLAC ^[3]
- no clear evidence of interf. or glueball in $e^+e^- \rightarrow J/\psi \rightarrow
 ho\pi$ @ BESII ^[4]

J. Bolz and P. Kroll, WU B 95-35.
 S.J. Brodsky, G.P. Lepage, S.F. Tuan, Phys. Rev. Lett. 59, 621 (1987).
 M. Boyarski et al., Phys. Rev. Lett. 34, 1357 (1975).
 J.Z. Bai et al., Phys. Rev. D 54, 1221 (1996).

HADRON 2011 💐 June 13th - 17th, 2011

J/ψ strong and electromagnetic decay amplitudes

non resonant

$$\Phi_{A_{\gamma}} \sim \Phi_{p} = \Phi_{G_{p}^{M}} \quad A_{NR} = -\beta e^{i\Phi_{p}}$$

$$\beta = \sqrt{\sigma} (e^{+}e^{-} \Leftrightarrow p\bar{p})$$

$$G_{p}^{M} \text{ real } @ W \sim M_{J/\psi} \quad [1]$$

$$\Delta \Phi = \Phi_{
ho} - \Phi_{lpha} \sim \Phi_{
ho}$$

HADRON 2011 and June 13th - 17th, 2011

Simulated
$$e^+e^- o Nar{N}$$
 @ $s \sim M_{J^\prime u}^2$

interference must have opposite sign as magnetic moments

radiative corrections and beam energy spread (BESIII) included!

B. Aubert et al. [BABAR Collaboration], Phys. Rev. D 73, 012005 (2006).
 R. Baldini, S. Pacetti, A. Zallo, arxiv:0812.3283 [hep-ph].

HADRON 2011 Dune 13th - 17th, 2011

Simulated $e^+e^- o par{p} @ s \sim M_{J/\psi}^2$ - BESIII scenario

HADRON 2011

🚵 June 13th - 17th, 2011

CORRECTIONS NEEDED!

- small effects from beam energy spread
- significant suppression from radiative corrections

Simulated $e^+e^- ightarrow p\bar{p}$ @ $s \sim M_{J/\psi}^2$ (20 pb^{-1})

continuum reference: $\sigma (e^+e^- \rightarrow p\bar{p}) \sim 11 \ pb^{[1]}$

radiative corrections and beam energy spread (BESIII) included!

^[1] B. Aubert et al. [BABAR Collaboration], Phys. Rev. D 73, 012005 (2006).

HADRON 2011 Dune 13th - 17th, 2011

Simulated $e^+e^- ightarrow n\bar{n} @ s \sim M_{J/\psi}^2$ (20 pb^{-1})

continuum reference: $\sigma (e^+e^- \rightarrow n\bar{n}) \sim 5 \ pb^{[1,2]}$

radiative corrections and beam energy spread (BESIII) included!

B. Aubert et al. [BABAR Collaboration], Phys. Rev. D 73, 012005 (2006).
 R. Baldini, S. Pacetti, A. Zallo, hep-ph0812.328v2.

Simulated $e^+e^- \rightarrow \rho \pi @ s \sim M_{J/\psi}^2$

continuum reference: $\sigma (e^+e^- \rightarrow \rho \pi) \sim 20 \ pb^{[1]}$

radiative corrections and beam energy spread (BESIII) included!

^[1] J.Z. Bai et al., Phys. Rev. D 54, 1221 (1996).

HADRON 2011 Dune 13th - 17th, 2011

Simulated $e^+e^- \rightarrow \rho \pi$ @ $s \sim M_{J/\psi}^2$ (20 ρb^{-1})

continuum reference: $\sigma (e^+e^- \rightarrow \rho \pi) \sim 20 \ pb^{[1]}$

radiative corrections and beam energy spread (BESIII) included!

^[1] J.Z. Bai et al., Phys. Rev. D 54, 1221 (1996).

HADRON 2011 Dune 13th - 17th, 2011

Measuring phase b/w strong and EM J/ ψ decay amplitudes

10

BEPCII: *e*⁺*e*⁻ double ring collider

HADRON 2011 Dune 13th - 17th, 2011

The **BESIII** detector

A significant improvement with respect to BESII

HADRON 2011 🔊 June 13th - 17th, 2011

BEPCII / BESIII milestones

Mar. 2008:	Collisions at 500 mA $ imes$ 500 mA,
	Luminosity: $1 \times 10^{32} cm^{-2} s^{-1}$
Apr. 30, 2008:	Move BESIII to IP
July 18, 2008:	First e^+e^- collision event in BESIII
Apr. 14, 2009:	\sim 106 M ψ^\prime events (150 pb^{-1})
	(\sim 42 pb^{-1} at 3.65 GeV)
July 28, 2009:	\sim 225 M J/ Ψ events (65pb ⁻¹)
2010-2011:	\sim 2.9 \textit{fb}^{-1} at $\psi^{\prime\prime}$
	(\sim 70 pb^{-1} scanning in the ψ'' energy region)
May, 2011:	\sim 0.5 <i>fb</i> ⁻¹ at 4.01 <i>GeV</i> (Ds and XYZ spectroscopy)

World J/Ψ and ψ' Samples (×10⁶)

HESR - High Energy Storage Ring @ FAIR

- Production rate $2 \times 10^7/s$
- *p*_{beam} = 1 ÷ 15 Gev/c
- $N_{stored} = 5 \times 10^{10} \ \bar{p}$
- Internal pellet target

High resolution mode

• $\delta p/p \sim 10^{-5}$ (electron cooling) • Luminosity $10^{31} cm^{-2} s^{-1}$

High luminosity mode

- \bigcirc Luminosity 2 \times 10³² cm⁻² s⁻¹
- $\delta p/p \sim 10^{-4}$ (electron cooling)

HADRON 2011 and June 13th - 17th, 2011

The PANDA Detector

Simulated $e^+e^- ightarrow par{p}$ @ PANDA and BESIII

BESIII scenario

strong suppression of interference
many channels accessible

PANDA scenario

large un-suppressed interference
 pp only

HADRON 2011 Dune 13th - 17th, 2011

Summary

- scan around interference dip (all exclusive channels for free!)
- at least one point far enough from $M_{J/\psi}$ (~ 100*MeV*) for continuum reference
- model independent evaluation of interference
- reference channel: $e^+e^-
 ightarrow par{p}$

QUOTED RESULTS relative to 20 pb⁻¹

Thank you!

HADRON 2011 and June 13th - 17th, 2011

BACK-UP SLIDES

HADRON 2011 🧱 June 13th - 17th, 2011

FENICE data on $e^+e^-
ightarrow Nar{N}$ @ $s \sim M_{J/d}^2$

Predictions for Φ_p making use of FENICE data

Early evidence of interference in $e^+e^- ightarrow \mu^+\mu^-$

HADRON 2011 Dune 13th - 17th, 2011

Simulated $e^+e^- ightarrow par{p}$ @ $s \sim M_{J/\psi}^2$ (20 pb^{-1})

^[1] B. Aubert et al. [BABAR Collaboration], Phys. Rev. D 73, 012005 (2006).

HADRON 2011 Dune 13th - 17th, 2011

The **BESII** and **BESIII** detectors

BESIII @ BEPCII

Device	Performance
MDC	$\sigma_p/p = 1.7\% \sqrt{1+p^2} , \ dE/dx = 8\%$
TOF	180 ps (bhabha)
EMC	$\sigma_{\sf E}/{\sf E} < 22\%/\sqrt{{\sf E}}$
MUC	3 layers
Magnet	0.4 T Solenoidal

Device	Performance
MDC	$\sigma_p/p=0.5\%~,~dE/dx<6\%$
TOF	80 ps barrel (bhabha), 100 ps endcap
EMC	$\sigma_{\sf E}/{\sf E} < 2.5\%/\sqrt{{\sf E}}$
MUC	9 barrel + 8 endcap layers
Magnet	1 T Solenoidal

HADRON 2011 Dune 13th - 17th, 2011