Recent BABAR Studies of Bottomonium States

Claudia Patrignani Università e INFN Genova for the BABAR Collaboration

HADRON 2011

XIV International Conference on Hadron Spectroscopy 13-17 June 2011 – München (Germany)

- Inclusive searches for the $h_b(1P)$ in
 - $\Upsilon(3S) \rightarrow \pi^+ \pi^- X$
 - $\Upsilon(3S) \rightarrow \pi^0 X$
- radiative $\Upsilon(3S)$ and $\Upsilon(2S)$ transitions using converted photons

Search for $h_{b}(1P)$

- Expected mass: $m_{h_b(1P)} = (m_{\chi_{b0}(1P)} + 3m_{\chi_{b1}(1P)} + 5m_{\chi_{b2}(1P)}) / 9 \approx 9900 \text{ MeV/c}^2$
- Predicted production mechanisms
 - $\mathcal{B}(\Upsilon(3S) \to \pi^+ \pi^- h_b(1P)) \sim 10^{-3} 10^{-2} \qquad \text{Kuang et al., PRD 37,1210(1988)}$
 - $\mathcal{B}(\Upsilon(3S) \rightarrow \pi^0 h_b(1P)) \sim 10^{-3}$
 - $R(\pi^0 h_b(1P)/\pi^+\pi^- h_b(1P)) = 0.05 20$
- •Expected decay modes

Godfrey and Rosner, PRD 66, 014012 (2002)

CLEO, PRD 43,1448(1991)

PRD 49, 40 (1994)

Voloshin, Sov, J. Nucl. Phys 43,1011(1986)

- $h_b(1P)$ → ggg (57%), γη_b(1S) (41%), γgg (2%)

•Previous experimental limits

- $\mathcal{B}(\Upsilon(3S) \to \pi^+\pi^- h_b(1P)) < 1.8 × 10^{-3}$
- $\mathcal{B}(\Upsilon(3S) \to \pi^0 h_b(1P)) < 2.8 × 10^{-3}$

Results

arXiv:1105.4234

fit result, with smooth background subtracted the inset shows the $h_b(1P)$ search region

Bottomonium dipion transitions

arXiv:1105.4234

122 M

Most precise or first measurements on other transitions $\Upsilon(3S)$

$$\begin{split} \mathcal{B}[\Upsilon(3S) \to \pi^+ \pi^- \Upsilon(2S)] &= (3.00 \pm 0.02(\text{stat.}) \pm 0.14(\text{syst.}))\% \\ \mathcal{B}[\Upsilon(3S) \to X\chi_{b1}(2P)] \times \mathcal{B}[\chi_{b1}(2P) \to \pi^+ \pi^- \chi_{b1}] &= (1.16 \pm 0.07 \pm 0.12) \times 10^{-3} \\ \mathcal{B}[\Upsilon(3S) \to X\chi_{b2}(2P)] \times \mathcal{B}[\chi_{b2}(2P) \to \pi^+ \pi^- \chi_{b2}] &= (0.64 \pm 0.05 \pm 0.08) \times 10^{-3} \\ \mathcal{B}[\Upsilon(3S) \to X\Upsilon(2S)] \times \mathcal{B}[\Upsilon(2S) \to \pi^+ \pi^- \Upsilon] &= (1.78 \pm 0.02 \pm 0.11)\% \\ \Delta m[\Upsilon(3S) \cdot \Upsilon(2S)] &= 331.50 \pm 0.02(\text{stat.}) \pm 0.13(\text{syst.}) \,\text{MeV}/c^2 \end{split}$$

dipion transitions between $\chi_{b1,2}$ states clearly separated for the first time

 $\begin{array}{l} \mathcal{B}(\chi_{b1}(2P) \rightarrow \pi^{+}\pi^{-}\chi_{b1}(1P)) = (9.2 \pm 0.6 \pm 0.9) \times 10^{-3} \\ \mathcal{B}(\chi_{b2}(2P) \rightarrow \pi^{+}\pi^{-}\chi_{b2}(1P)) = (4.9 \pm 0.4 \pm 0.6) \times 10^{-3} \\ \text{consistent with the CLEO measurement} \\ \text{(the two transitions were not resolved)} \\ \text{PRD 73, 012003 (2006)} \end{array}$

Evidence for $\Upsilon(3S) \rightarrow \pi^0 h_b(1P)$ Preliminar

Select events with a π^0 and a photon

Require E_{γ} to be compatible with $h_b \rightarrow \gamma \eta_b (1S)$ (dominant decay mode) [arXiv:1102.4565]

In each bin of $m_{recoil} = \sqrt{(m_{\Upsilon(3S)} - E_{\pi}^{*0})^2 - P_{\pi}^{*0^2}}$

• perform a fit to the $\gamma\gamma$ inv. mass distribution to determine the number of π^0 in that bin

to obtain the distribution of the number of events recoiling against a π^0 as a function of m_{recoil}

C. Patrignani - Genova

HADRON 2011, Münich 13-17 June

У

22 M

(3S)

C. Patrignani - Genova

Bottomonium radiative transitions with converted photons

Rates generally phenomenologically well-predicted

arXiv:1104.5254

large \mathcal{B} for electric dipole transitions

 $\Upsilon(3S) \rightarrow \chi_{bJ}(2P), \ \Upsilon(2S) \rightarrow \chi_{bJ}(1P), \ \chi_{bJ}(2P) \rightarrow \Upsilon(2S), \ \chi_{bJ}(1P) \rightarrow \Upsilon(1S)$

"hindered" electric dipole transitions suppressed

 $\Upsilon(3S) \rightarrow \chi_b J(1P), \ \chi_b J(2P) \rightarrow \Upsilon(1S)$

"hindered" M1 transitions highly suppressed: $\Upsilon(3S) \rightarrow \eta_b(1S), \Upsilon(2S) \rightarrow \eta_b(1S)$

For some of these transitions the photons are in the same energy range "overlapping" due to Doppler broadening and detector resolution

Deconvolving the individual contributions has been the main difficulty in earlier measurements

Use converted photons ($\gamma \rightarrow e+e-$) to improve resolution (e.g.: $25 \rightarrow 5$ MeV)

Price: efficiency (0.1÷2.5)%

Converted photon energy spectra

C. Patrignani - Genova

1) $\Upsilon(3S) - 180 < E_{\gamma}^{*} < 300 \text{ MeV}$

arXiv:1104.5254

expect:

3 signal transitions for $\chi_{bJ}(2P) \rightarrow \gamma \Upsilon(2S)$ possibly 6 transitions for $\Upsilon(1D_J) \rightarrow \gamma \chi_{bJ}(2P)$

Transition	E^*_{γ}	Yield	ϵ	Derived Branching Fraction (%)		
	(MeV)		(%)	BABAR	CUSB	CLEO
$\chi_{b0}(2P) \to \gamma \Upsilon(2S)$	205.0	-347 ± 209	0.105	$-4.9 \pm 2.9^{+0.7}_{-0.8} \pm 0.5 \ (< 2.9)$	3.6 ± 1.6	< 5.2
$\chi_{b1}(2P) \to \gamma \Upsilon(2S)$	229.7	4294 ± 251	0.152	$19.5 \pm 1.1^{+1.1}_{-1.0} \pm 1.9$	13.6 ± 2.4	21.1 ± 4.5
$\chi_{b2}(2P) \to \gamma \Upsilon(2S)$	242.3	2462 ± 243	0.190	$8.6^{+0.9}_{-0.8} \pm 0.5 \pm 1.1$	10.9 ± 2.2	9.9 ± 2.7

C. Patrignani - Genova

2) $\Upsilon(3S) - 300 < E_{\gamma}^{*} < 600 \text{ MeV}$

Complicated spectrum

3 signal transitions for $\Upsilon(3S) \rightarrow \gamma \chi_{bJ}(1P)$

3 overlapping Doppler-broadened transitions for $\chi_{bJ}(1P) \rightarrow \gamma \Upsilon(1S)$, shape depends on the path to $\chi_{bJ}(1P)$

Precise measurement of $\mathcal{B}(\Upsilon(3S) \rightarrow \gamma \chi_{b0,2}(1P))$

Transition	E_{γ}^{*} (MeV)	Yield	ϵ (%)	Derived Branching Fr BABAR	action $(\times 10^{-3})$ CLEO	disagreement(?) with CLEO
$\frac{\Upsilon(3S) \to \gamma \chi_{b2}(1P)}{\Upsilon(3S) \to \gamma \chi_{b2}(1P)}$	433.1	9699 ± 318	0.794	$10.6 \pm 0.3 \pm 0.6$	7.7 ± 1.3	exclusive analysis $\chi(2S)$
$\frac{\Upsilon(3S) \to \gamma \chi_{b1}(1P)}{\Upsilon(3S) \to \gamma \chi_{b0}(1P)}$	$452.2 \\ 483.5$	483 ± 315 2273 ± 307	0.818	$\begin{array}{c} 0.5 \pm 0.3 \substack{+0.2 \\ -0.1} \ (< 1.1) \\ 2.7 \pm 0.4 \pm 0.2 \end{array}$	1.6 ± 0.5 3.0 ± 1.1	PRD 83, 054003 (201)

C. Patrignani - Genova

HADRON 2011, Münich 13-17 June

1).

arXiv:1104.5254

3) $\Upsilon(3S) - 600 < E_{\gamma}^{*} < 1100 \text{ MeV}$

arXiv:1104.5254

Expect

3 signal overlapping transitions for $\chi_{bJ}(2P) \rightarrow \gamma \Upsilon(1S)$ $\Upsilon(3S) \rightarrow \gamma \eta_b(1S)$ and photon from ISR $\Upsilon(1S)$ production

Precise measurement of $\mathcal{B}(\chi_{b1,2}(2P) \rightarrow \gamma \Upsilon(1S))$ statistics insufficient for $\eta_b(1S)$

Transition	E^*_{γ}	Yield ϵ		Derived Branching Fraction (%)			
	(MeV)		(%)	BABAR	CUSB	CLEO	
$\chi_{b0}(2P) \to \gamma \Upsilon(1S)$	742.7	469^{+260}_{-259}	1.025	$0.7 \pm 0.4^{+0.2}_{-0.1} \pm 0.1 \ (< 1.2)$	< 1.9	< 2.2	
$\chi_{b1}(2P) \to \gamma \Upsilon(1S)$	764.1	14965^{+381}_{-383}	1.039	$9.9 \pm 0.3 \pm 0.4 \pm 0.9$	7.5 ± 1.3	10.4 ± 2.4	
$\chi_{b2}(2P) \to \gamma \Upsilon(1S)$	776.4	11283^{+384}_{-385}	1.056	$7.1 \pm 0.2 \pm 0.3 \pm 0.9$	6.1 ± 1.2	7.7 ± 2.0	
$\Upsilon(3S) \to \gamma \eta_b(1S)$	$907.9 \pm 2.8 \pm 0.9$	933^{+263}_{-262}	1.388	$0.059 \pm 0.016^{+0.014}_{-0.016}$	-	-	

C. Patrignani - Genova

4) $\Upsilon(2S) - 300 \le \frac{*}{\gamma} \le 800 \text{ MeV}$

arXiv:1104.5254

Expect

3 signal transitions for $\chi_{bJ}(1P) \rightarrow \gamma \Upsilon(1S)$

 $\Upsilon(2S) \rightarrow \gamma \eta_b(1S)$ and photon from ISR $\Upsilon(1S)$ production

Precise measurement of $\mathcal{B}(\chi_{b1,2}(1P) \rightarrow \gamma \Upsilon(1S))$ statistics insufficient for $\eta_b(1S)$

Transition	E^*_{γ}	Yield	ϵ	Derived Branching Fraction (%))
	(MeV)		(%)	BABAR	CB	CUSB	CLEO
$\chi_{b0}(1P) \to \gamma \Upsilon(1S)$	391.5	391 ± 267	0.496	$2.3 \pm 1.5^{+1.0}_{-0.7} \pm 0.2 \ (< 4.6)$	< 5	< 12	1.7 ± 0.4
$\chi_{b1}(1P) \to \gamma \Upsilon(1S)$	423.0	12604 ± 285	0.548	$36.2 \pm 0.8 \pm 1.7 \pm 2.1$	34 ± 7	40 ± 10	33.0 ± 2.6
$\chi_{b2}(1P) \to \gamma \Upsilon(1S)$	442.0	7665^{+270}_{-272}	0.576	$20.2 \pm 0.7^{+1.0}_{-1.4} \pm 1.0$	25 ± 6	19 ± 8	18.5 ± 1.4
$\Upsilon(2S) \to \gamma \eta_b(1S)$	$613.7^{+3.0+0.7}_{-2.6-1.1}$	1109 ± 348	1.050	$0.11 \pm 0.04^{+0.07}_{-0.05} \ (< 0.22)$	-	-	-

C. Patrignani - Genova

Discussion of the results

Decay	BABAR (%)	Theory (%)	
$\mathcal{B}(\chi_{b0}(2P) \to \gamma \Upsilon(2S))$	(< 2.9)	1.27	The branching fractions for
$\mathcal{B}(\chi_{b1}(2P) \to \gamma \Upsilon(2S))$	19.1 ± 2.3	20.2	γ (1.2P) $\rightarrow\gamma\gamma\gamma(1.2S)$
$\mathcal{B}(\chi_{b2}(2P) \to \gamma \Upsilon(2S))$	8.2 ± 1.4	10.1	$\lambda_{bJ}(1,-1) \rightarrow f(1,-2)$
$\mathcal{B}(\chi_{b0}(2P) \to \gamma \Upsilon(1S))$	(< 1.2)	0.96	are in good agreement with
$\mathcal{B}(\chi_{b1}(2P) \to \gamma \Upsilon(1S))$	9.9 ± 1.1	11.8	predictions e.g.
$\mathcal{B}(\chi_{b2}(2P) \to \gamma \Upsilon(1S))$	$7.1^{+1.0}_{-0.9}$	5.3	Kwong,Rosner, PRD38, 279 (1988)
$\mathcal{B}(\chi_{b0}(1P) \to \gamma \Upsilon(1S))$	(< 4.6)	3.2	
$\mathcal{B}(\chi_{b1}(1P) \to \gamma \Upsilon(1S))$	36.2 ± 2.8	46.1	
$\mathcal{B}(\chi_{b2}(1P) \to \gamma \Upsilon(1S))$	$20.2^{+1.6}_{-1.8}$	22.2	

3S→1P rates differ from the expected $E_{\gamma}^{3}(2J+1)$ pattern and are generally poorly compatible with theory predictions

Source	J = 0	J = 1	J=2
BABAR	55 ± 10	< 22	216 ± 25
Moxhay-Rosner	25	25	150
Grotch <i>et al.</i>	114	3.4	194
Daghighian-Silverman	16	100	650
Fulcher	10	20	30
Lähde	150	110	40
Ebert <i>et al.</i>	27	67	97

partial widths in eV

Conclusions

- no evidence for $\Upsilon(3S) \rightarrow \pi^+ \pi^- h_b(1P)$
- evidence for $\Upsilon(3S) \rightarrow \pi^0 h_b(1P)$
 - mass compatible with expectation
 - branching ratio values marginally discriminating between different calculations
- Very precise measurements of a number of hadronic and radiative transitions

Babar continues the analysis of the large samples collected at the narrow Υ resonances. Expect more results ...